• Title/Summary/Keyword: Radiation field Size

Search Result 386, Processing Time 0.031 seconds

Evaluation on the radiation exposure from activated wedge filter (10MV 이상 고에너지 사용시 wedge filler의 방사화가 작업환경에 미치는 영향평가)

  • Lee HwaJung;Kim DaeYoung;Kim WonTaek;Lee KangHyeok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.69-79
    • /
    • 2004
  • In the process of photon treatments, linear accelerators with energies higher than 10 MV produce neutrons through the (${\gamma}$, n) interactions with the composite materials of the linac head md these materials further produce the induced radiations. We investigate the possible risks from these induced radiations especially in the wedge filters to the radiation workers. Wedge filters are used to modify the isodose profiles in the radiation treatment using the linear accelerator and always be handled by the radiation workers. For the background radiation, we measured the radiation in both the waiting room and the outside of the building for two hospitals, S and H. The results of S hospital were $0.11\;{\mu}Sv/hr$ and $0.10\;{\mu}Sv/hr$ for waiting room and outside respectively, and in the case of H hospital, they were $0.12\;{\mu}Sv/hr$ and $0.11\;{\mu}Sv/hr$. Using a survey meter, we measured the radiation from wedge filters inserted in 10 MV and 15 MV Siemens linear accelerators. The time series measurements were done in ${\sim}1$ minutes after exposure of 5 Gy of monitor units for the field size of $25{\times}25cm^2$. The starting value of 10 MV machine was about $3.26\;{\mu}Sv/hr$, which was three times higher than that of 10 MV. The measured radiation was from $^{28}Al$ and $^{53}Fe$ with a half life of 3.5 min. If the treatment patients are $20{\sim}50$ per day and the number of process of wedge filter change per patient is one or two, the annual dose equivalent is $0.08{\sim}0.4\;mSv$ for 10 MV, and $0.27{\sim}1.36\;mSv$ for 15 MV, which are in the range of dose equivalent limits of radiation workers.

  • PDF

Difference in the Set-up Margin between 2D Conventional and 3D CT Based Planning in Patients with Early Breast Cancer (조기유방암환자의 이차원치료계획과 삼차원치료계획의 방사선조사범위의 차이)

  • Jo, Sun-Mi;Chun, Mi-Son;Kim, Mi-Hwa;Oh, Young-Taek;Kang, Seung-Hee;Noh, O-Kyu
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.177-183
    • /
    • 2010
  • Purpose: Simulation using computed tomography (CT) is now widely available for radiation treatment planning for breast cancer. It is an important tool to help define the tumor target and normal tissue based on anatomical features of an individual patient. In Korea, most patients have small sized breasts and the purpose of this study was to review the margin of treatment field between conventional two-dimensional (2D) planning and CT based three-dimensional (3D) planning in patients with small breasts. Materials and Methods: Twenty-five consecutive patients with early breast cancer undergoing breast conservation therapy were selected. All patients underwent 3D CT based planning with a conventional breast tangential field design. In 2D planning, the treatment field margins were determined by palpation of the breast parenchyma (In general, the superior: base of the clavicle, medial: midline, lateral: mid - axillary line, and inferior margin: 2 m below the inframammary fold). In 3D planning, the clinical target volume (CTV) ought to comprise all glandular breast tissue, and the PTV was obtained by adding a 3D margin of 1 cm around the CTV except in the skin direction. The difference in the treatment field margin and equivalent field size between 2D and 3D planning were evaluated. The association between radiation field margins and factors such as body mass index, menopause status, and bra size was determined. Lung volume and heart volume were examined on the basis of the prescribed breast radiation dose and 3D dose distribution. Results: The margins of the treatment field were smaller in the 3D planning except for two patients. The superior margin was especially variable (average, 2.5 cm; range, -2.5 to 4.5 cm; SD, 1.85). The margin of these targets did not vary equally across BMI class, menopause status, or bra size. The average irradiated lung volume was significantly lower for 3D planning. The average irradiated heart volume did not decrease significantly. Conclusion: The use of 3D CT based planning reduced the radiation field in early breast cancer patients with small breasts in relation to conventional planning. Though a coherent definition of the breast is needed, CT-based planning generated the better plan in terms of reducing the irradiation volume of normal tissue. Moreover it was possible that 3D CT based planning showed better CTV coverage including postoperative change.

The Study of Dose Change by Field Effect on Atomic Number of Shielding Materals in 6 MeV Electron Beam (6 MeV 전자선의 차폐물질 원자번호와 조사야 크기에 따른 선량변화 연구)

  • Lee, Seung Hoon;Kwak, Keun Tak;Park, Ju Kyeong;Gim, Yang Soo;Cha, Seok Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.145-151
    • /
    • 2013
  • Purpose: In this study, we analyzed how the dose change by field size effects on atomic number of shielding materials while using 6 MeV election beam. Materials and Methods: The parallel plate chamber is mounted in $25{\times}25cm^2$ the phantom such that the entrance window of the detector is flush with the phantom surface. phantom was covered laterally with aluminum, copper and lead which thickness have 5% of allowable transmission and then the doses were measured in field size $6{\times}6$, $10{\times}10$ and $20{\times}20cm^2$ respectively. 100 cGy was irradiated using 6 MeV electron beam and SSD (Source Surface Distance) was 100 cm with $10{\times}10cm^2$ field size. To calculate the photon flux, electron flux and Energy deposition produced after pass materals respectively, MCNPX code was used. Results: The results according to the various shielding materials which have 5% of allowable transmission are as in the following. Thickness change rate with field size of $6{\times}6cm^2$ and $20{\times}20cm^2$ that compared to the field size of $10{\times}10cm^2$ found to be +0.06% and -0.06% with aluminum, +0.13% and -0.1% with copper, -1.53% and +1.92% with lead respectively. Compare to the field size $10{\times}10cm^2$, energy deposition for $6{\times}6cm^2$ and $20{\times}20cm^2$ had -4.3% and +4.85% respectively without shielding material. With aluminum it had -0.87% and +6.93% respectively and with lead it had -4.16% and +5.57% respectively. When it comes to photon flux with $6{\times}6cm^2$ and $20{\times}20cm^2$ of field sizes the chance -8.95% and +15.92% without shielding material respectively, with aluminum the number -15.56% and +16.06% respectively and with copper the chance -12.27% and +15.53% respectively, with lead the number +12.36% and -19.81% respectively. In case of electron flux in the same condition, the number -3.92% and +4.55% respectively without shielding material respectively, with aluminum the number +0.59% and +6.87% respectively, with copper the number -1.59% and +3.86% respectively, with lead the chance -5.15% and +4.00% respectively. Conclusion: In this study, we found that the required thickness of the shielding materials got thinner with low atomic number substance as the irradiation field is increasing. On the other hand, with high atomic number substance the required thickness had increased. In addition, bremsstrahlung radiation have an influence on low atomic number materials and high atomic number materials are effected by scattered electrons.

  • PDF

Evaluation of Surface Dose for Field-in-Field (FIF) Technique in Breast Radiotherapy (유방암 방사선치료에서 Field-in-Field (FIF) 기법의 조사면 주변 선량 분석)

  • Il-Hoon, Cho;Daehong, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.851-856
    • /
    • 2022
  • The purpose of this study is to confirm the effect of reducing the surface dose around the radiation field in breast cancer radiotherapy using the Field-in-Field (FIF) technique. X-ray was exposed from a linear accelerator (Linac) was used for irradiation, and the surface dose was measured with a glass dosimeter. The source-to-surface distance (SSD) was 90 cm, the field size is 10 × 10 cm2, and the X-ray energy was 6 MV and 10 MV, respectively. The surface dose of the FIF was compared with the dose measured in the physical wedge (PW) and dynamic wedge (DW). Wedge angles of 15° and 30° were used in the PW and DW, respectively. Surface dose was measured at 1 cm, 3 cm, and 5 cm from the center of the field size, respectively. According to the results, FIF showed lower surface dose compared to PW and DW regardless of the energy of the X-ray beam, wedge angle, and dose measurement point. Since FIF could reduce the radiation dose in periphery of the field size in breast cancer treatment, it is expected to be able to reduce the secondary damage caused by the radiation beam as well as to obtain a uniform dose distribution on the target.

A Study of Three-dimension Tissue Equivalent Compensator for 6MV X-Rays (6MV X-선에 대한 삼차원적 조직보상체의 연구)

  • Kim, Ok-Bae;Choi, Tae-Jin;Suh, Soo-Jhi
    • Radiation Oncology Journal
    • /
    • v.7 no.1
    • /
    • pp.133-140
    • /
    • 1989
  • Three-dimension paraffin compensator was designed to construct the tissue equivalent compensator for irregular body contours and obiliques beam incidence. The ratio of compensator thickness to tissue deficit was depended on field size, depth and air gap because the scattered dose loss. The ratio of compensator-tissue was optimized 0.79, 0.73, 0.61 and 0.56 in 6MV x-rays as function of field size $4{\times}4$, $10{\times}10$, $20{\times}20$ and $30{\times}30cm^2$ respectively. in our study. Using this tissue equivalent compensator, it can be got 2% difference of dose at same mid-plane in phantom study.

  • PDF

Transmission Dose Estimation Algorithm for in vivo Dosimetry

  • Yun, Hyong-Geun;Huh, Soon-Nyung;Lee, Hyoung-Koo;Woo, Hong-Gyun;Shin, Kyo-Chul;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.1
    • /
    • pp.59-63
    • /
    • 2003
  • Purpose : Measurement of transmission dose is useful for in vivo dosimetry of QA purpose. The objective of this study is to develope an algorithm for estimation of tumor dose using measured transmission dose for open radiation field. Materials and Methods : Transmission dose was measured with various field size (FS), phantom thickness (Tp), and phantom chamber distance (PCD) with a acrylic phantom for 6 MV and 10 MV X-ray Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. Using measured data and regression analysis, an algorithm was developed for estimation of expected reading of transmission dose. Accuracy of the algorithm was tested with flat solid phantom with various settings. Results : The algorithm consisted of quadratic function of log(A/P) (where A/P is area-perimeter ratio) and tertiary function of PCD. The algorithm could estimate dose with very high accuracy for open square field, with errors within ${\pm}0.5%$. For elongated radiation field, the errors were limited to ${\pm}1.0%$. Conclusion : The developed algorithm can accurately estimate the transmission dose in open radiation fields with various treatment settings.

Reduction of Electron Contamination Using a Filter for 6MV Photon Beam (6MV 광자선에서 전자오염 감소에 관한 연구)

  • Lee, Choul-Soo;Yoo, Myung-Jin;Yum, Ha-Yong
    • Radiation Oncology Journal
    • /
    • v.15 no.2
    • /
    • pp.159-165
    • /
    • 1997
  • Purpose : Secondary electrons generated by interaction between Primary X-rar beam and block tray in megavoltage irradiation, result in excess soft radiation dose to the surface layer To reduce the surface dose from the electron contamination, electron filters were attached under the tray when a customized block was used. Materials and Methods : Cu, Al or Cu/Al combined Plate with different thickness was used as a filter and the surface dose reduction was measured for each case. The measurement to find optimal filter was performed with $10m\times10cm$ field size and 78.5cm source to surface distance. The measurement points are positioned with 2mm intervals from surface to maximum build-up point. To acquire the effect of field size dependence on optimal electron filter, the measurement was performed from $4cm\times4cm\;to\;25cm\times25cm$ field sizes. Results : The surface dose was slowly increased by increasing irradiation field but rapidly increased beyond $15cm\times15cm$ field size. Al plate was found to be inadequate filter because of the failure to have surface dose kept lowering than the dose of deep area. Cu 0.5mm plate and Cu/Al=0.28mm/1.5mm combined plate were found to be optimal filters. By using these 2 filters, the absorbed dose to the surface layer was effectively reduced by $5.5\%,\;11.3\%,\;and\;22.3\%$ for the field size $4cm\times4cm,\;10m\times10cm,\;and\;25cm\times25cm$, respectively. Conclusion : The surface dose attributable to electron contamination had a dependence on field size. The electron contamination was increased when tray was used. Specially the electron contamination in the surface layer was greater when the larger field was used. 0.5mm Cu Plate and Cu/Al=0.28mm/15mm combined plates were selected as optimal electron filters. When the optimal electron filter was attached under the tray, excessive surface dose was decreased effectively The effect of these electron filters was better when a larger field was used.

  • PDF

Analysis of Small-Field Dosimetry with Various Detectors

  • Park, So-Yeon;Choi, Byeong Geol;Lee, Dong Myung;Jang, Na Young
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.164-172
    • /
    • 2018
  • We evaluated the performance of various detectors for small-field dosimetry with field sizes defined by a high-definition (HD) multileaf collimator (MLC) system. For small-field dosimetry, diodes referred to as "RAZOR detectors," MOSFET detectors, and Gafchromic EBT3 films were used in this study. For field sizes less than $1{\times}1cm^2$, percent depth doses (PDDs) and lateral profiles were measured by diodes, MOSFET detectors, and films, and absolute dosimetry measurements were conducted with MOSFET detectors. For comparison purposes, the same measurements were carried out with a field size of $10{\times}10cm^2$. The dose distributions were calculated by the treatment planning system Eclipse. A comparison of the measurements with calculations yielded the percentage differences. With field sizes less than $1{\times}1cm^2$, it was shown that most of the percentage difference values were within 5% for 6-MV and 15-MV photon beams with the use of diodes. The measured lateral profiles were well matched with those calculated by Eclipse as the field sizes increased. Except for the depths of 0.5 cm and 20 cm, there was agreement in terms of the absolute dosimetry within 10% when MOSFET detectors were used. There was good agreement between the calculations and measurements conducted using diodes and EBT films. Both diode detectors and EBT3 films were found to be appropriate options for relative measurements of PDDs and for lateral profiles.

Statistical study of turbulence from polarized synchrotron emission

  • Lee, Hyeseung;Cho, Chungyeon;Lazarian, Alexandre
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.56.1-56.1
    • /
    • 2017
  • When turbulent motions perturb magnetic field lines and produce magnetic fluctuations, the perturbations leave imprints of turbulence statistics on magnetic field. Observation of synchrotron radiation is one of the easiest ways to study turbulent magnetic field. Therefore, we study statistical properties of synchrotron polarization emitted from media with magnetohydrodynamic (MHD) turbulence, using both synthetic and MHD turbulence simulation data. First, we obtain the spatial spectrum and its derivative with respect to wavelength of synchrotron polarization arising from both synchrotron radiation and Faraday rotation. The study of spatial spectrum shows how the spectrum is affected by Faraday rotation and how we can recover the statistics of underlying turbulent magnetic field as well as turbulent density of electrons from interferometric observations that incorporate the effects of noise and finite telescopic beam size. Second, we study quadrupole ratio to quantitatively describe the degree of anisotropy introduced by magnetic field in the presence of MHD turbulence. We consider the case that the synchrotron emission and Faraday rotation are spatially separated, as well as the situation that the sources of the synchrotron radiation and thermal electrons causing Faraday rotation exist in the same region. In this study, we demonstrate that the spectrum and quadrupole ratio of synchrotron polarization can be very informative tools to get detailed information about the statistical properties of MHD turbulence from radio observations of diffuse synchrotron polarization.

  • PDF

A Study on QA for Radiation Therapy Machine by Using Implemented Electronic Portal Imaging Device (전자포탈영상장치의 제작과 방사선치료장치의 QA 적용에 관한 연구)

  • Lee, Dong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.6 s.312
    • /
    • pp.68-75
    • /
    • 2006
  • During cancer therapy by using high energy radiation, it is possible to improve the radiation therapy efficiency by performing a precise radiation therapy after verification of generated setup errors. In this paper, the video based electronic portal imaging device (EPID) which could display the portal image with near real time was developed to verify treatment position errors in radiation therapy instead of an analog typed portal film. This EPID system for applying QA tool of radiation therapy machine was consisted of a metal/fluorescent screen, $45^{\circ}$mirror, camera and image grabber. Radiation field verification has been performed to check quality assurance of the treatment machine itself by using this EPID system. The radiation field error was easily observed by edge detection of irradiated field size on EPID image when $0.6^{\circ}$ shift of collimator angle was generated. So, this implemented EPID system could be used as a radiation QA tool.