• Title/Summary/Keyword: Radiation exposure management

Search Result 233, Processing Time 0.031 seconds

System Software Design of Computerized Tomography Radiation Dose Management (컴퓨터 단층촬영 방사선 노출 관리 시스템 소프트웨어 설계)

  • Yang, Yu Mi;Cho, Sang Wook;Lee, Kil Hung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.41-48
    • /
    • 2014
  • This paper provides the design of system software for the management of radiation dose that is generated by using computerized tomography(CT). Recently, the radiation leakage incident of Japanese nuclear power plant was in the news internationally and there is a growing interest not only in nuclear power plant but in medical radiation exposure. In spite of the fact that currently safety management of radiation is under control only the workers of the radiation involved, now the exposure management of patients have been required. As surgery and inspections using the radiation have increased, this medical radiation exposure is increasing too. But it is a real situation that medical institutions don't know the level of radiation exposure applied to the patient. Therefore, a system for managing the radiation exposure of a patient from the medical institution is required. This paper proposes a design of a software program that manages the radiation exposure of CT which is a typical imaging tool to use the radiation in the medical institution. By check the amount of radiation dose and set the limit of dose, we would be of help to optimize the medical exposure of the patient.

A Study on the Management of Exposure of Workers and Assistants Related to Diagnostic Radiation (진단용 방사선 관련 업무 종사자의 피폭관리에 관한 연구)

  • Lim, Chang-Seon
    • The Korean Society of Law and Medicine
    • /
    • v.22 no.3
    • /
    • pp.97-124
    • /
    • 2021
  • In medical institutions, there are radiation-related workers such as radiological technologists, physicians, dentists, and dental hygienists who handle diagnostic radiation generators. Also, there are work assistants, such as nurses and assistant nurses, who assist in radiation treatment or transfer patients to the radiation examination room. Radiation exposure management for radiation-related workers is carried out under the 「Medical Service Act」, but there is no legal basis for work assistants, etc. And the management of radiation exposure for diagnosis is regulated by the 「Medical Service Act」, and the management of radiation exposure by therapeutic radiation and nuclear medical examination is governed by the 「Nuclear Safety Act」. Thus, to improve the management of radiation exposure for diagnosis, the regulations on radiation exposure management for diagnosis under the 「Medical Service Act」 were compared and reviewed with those of the 「Nuclear Safety Act」. As a result, the main contents are as follows. First, it is necessary to legislate to include nurses, assistant nurses, and clinical practice students who are likely to be exposed to radiation besides radiationrelated workers as subjects of radiation exposure management for diagnosis. Second, when a radiation-related worker for diagnosis is confirmed to be pregnant, the exposure dose limit should be defined. Third, it is necessary to revise the regulations on the types of personal exposure dosimeters in the 「Rules on the Safety Management of Radiation Generators for Diagnostics」. Fourth, it seems that health examination items for radiation-related workers, radiation workers, and frequent visitors should be the same. Fifth, It is necessary to unify and regulate diagnostic radiation and all medical radiation, including therapeutic radiation and nuclear medicine, in one legal system.

System Software Design of Computed Tomography Radiation Dose Management (컴퓨터 단층촬영(CT) 방사선 노출 관리 시스템 소프트웨어 설계)

  • Yang, Yu-mi;Lee, Kil-hung;Cho, Sang-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.489-492
    • /
    • 2014
  • This thesis provides the design of system software for the management of radiation dose that is generated using computer tomography(CT). Because radiation exposure is different depending on the difference in sensitivity to each part for each of the patient's body, if we will be able to manage an appropriate amount of radiation, it is possible to estimate the radiation exposure of the patient as a result. Recently, radiation leakage incident of Japanese nuclear power plant was in the news internationally and there is a growing interest not only a nuclear power plant, to medical radiation exposure. In spite of the fact that currently safety management of radiation is under control only the workers of the radiation involved, exposure management of patients until now have been required. Surgery and inspection using the radiation in Korea will increase, due to this medical exposure has increased, but it is a reality that medical institution don't know the level of radiation exposure applied to the patient. Therefore a system for managing the radiation exposure of the patient from the medical institution is required. This paper proposes a design of a software program to manage the radiation exposure of CT is an typical imaging tool to use the radiation in the medical institution. By check the amount of radiation dose and set the limit of dose, we would help to optimize the medical exposure of the patient.

  • PDF

Determination of Consistency according to the Status of Supplementary Education for Radiation Safety Management Managers (방사선안전관리책임자 보수교육의 현황에 따른 정합성 판단)

  • Seung-Chul Kim
    • Journal of radiological science and technology
    • /
    • v.47 no.1
    • /
    • pp.7-12
    • /
    • 2024
  • Medical institutions wishing to install and operate diagnostic radiation generators must complete appointment training within one year of appointment based on the 「Medical Act」 and the 「Rules on Safety Management of Diagnostic Radiation Generator Devices」 which will come into effect on January 1, 2024. Additionally, You must receive supplementary education every three years from the date you received it. The strengthening of safety management for diagnostic radiation generators used in medical institutions means that although the radiation exposure that may occur when using diagnostic radiation generators is low, the risk of carcinogenesis may be higher than previously evaluated. In addition, safety management of diagnostic radiation generators can be said to be an essential requirement because it has been reported that the incidence of leukemia and other diseases is increasing in diagnostic radiation tests. However, the safety management training targets and programs for radiation exposure management operated by other organizations other than diagnostic radiation generators are significantly different. In addition, since the public institutions that are responsible for radiation safety management are divided, there is a risk of duplicative, excessive, and under-administrative application to medical institutions and educational institutions that install and operate diagnostic radiation generators. Therefore, we would like to determine their consistency by comparing domestic and foreign related cases and the provisions of the 「Medical Act」 and the 「Nuclear Safety Act」.

Radiation safety for pain physicians: principles and recommendations

  • Park, Sewon;Kim, Minjung;Kim, Jae Hun
    • The Korean Journal of Pain
    • /
    • v.35 no.2
    • /
    • pp.129-139
    • /
    • 2022
  • C-arm fluoroscopy is a useful tool for interventional pain management. However, with the increasing use of C-arm fluoroscopy, the risk of accumulated radiation exposure is a significant concern for pain physicians. Therefore, efforts are needed to reduce radiation exposure. There are three types of radiation exposure sources: (1) the primary X-ray beam, (2) scattered radiation, and (3) leakage from the X-ray tube. The major radiation exposure risk for most medical staff members is scattered radiation, the amount of which is affected by many factors. Pain physicians can reduce their radiation exposure by use of several effective methods, which utilize the following main principles: reducing the exposure time, increasing the distance from the radiation source, and radiation shielding. Some methods reduce not only the pain physician's but also the patient's radiation exposure. Taking images with collimation and minimal use of magnification are ways to reduce the intensity of the primary X-ray beam and the amount of scattered radiation. It is also important to carefully select the C-arm fluoroscopy mode, such as pulsed mode or low-dose mode, for ensuring the physician's and patient's radiation safety. Pain physicians should practice these principles and also be aware of the annual permissible radiation dose as well as checking their radiation exposure. This article aimed to review the literature on radiation safety in relation to C-arm fluoroscopy and provide recommendations to pain physicians during C-arm fluoroscopy-guided interventional pain management.

Analysis of Cosmic Radiation Exposure for Domestic Flight Crews in Korea

  • Ahn, Hee-Bok;Hwang, Junga;Kwak, Jaeyoung;Kim, Kyuwang
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.51-57
    • /
    • 2022
  • Cosmic radiation exposure of the flight crews in Korea has been managed by Radiation Safety Management around Living Life Act under Nuclear Safety and Security Commission. However, the domestic flight crews are excluded from the Act because of relatively low route dose exposure compared to that of international flight crews. But we found that the accumulated total annual dose of domestic flight crews is far from negligible because of relatively long total flight time and too many flights. In this study, to suggest the necessity of management of domestic flight crews' radiation exposure, we statistically analyzed domestic flight crew's accumulative annual dose by using cosmic radiation estimation models of the Civil Aviation Research Institute (CARI)-6M, Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS), and Korean Radiation Exposure Assessment Model (KREAM) and compared with in-situ measurements of Liulin-6K LET spectrometer. As a result, the average exposure dose of domestic flight crews was found to be 0.5-0.8 mSv. We also expect that our result might provide the basis to include the domestic flight crews as radiation workers, not just international flight attendants.

- A Study on Safety of the Radiation Exposure Dose Optimization at Chest B-ray Examinations - (사업장 단체검진 시 흉부촬영의 방사선피폭 최적화 및 안전에 대한 고찰)

  • Rhim Jae Dong;Kang Kyong Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.3
    • /
    • pp.87-97
    • /
    • 2004
  • The National Health Insurance Act, the Industrial Health Act and the School Health Act require chest radiography at least once a year. In chest radiographic examination, most group examinations use indirect X-ray primarily aiming at diagnosing diseases and enhancing people's health. This study purposed to minimize radiation exposure dose by comparing it between direct and indirect chest X-ray studies. According to the result of comparing and analyzing radiation exposure dose, the average incident dose and penetrating dose were 0.929μGy and 0.179μGy respectively in direct chest X-ray and 6.807μGy and 1.337μGy in indirect chest X-ray In order to minimize radiation exposure dose at direct and indirect chest X-ray, indirect X-ray should be excluded from group examination if possible. Moreover, it is necessary to control the quality of equipment (Q/A & Q/C) systematically and to avoid using unqualified equipment in order to reduce radiation exposure dose.

Exposure Assessment and Management of Ionizing Radiation (전리방사선 노출과 관리)

  • Chung, Eun-Kyo;Kim, Kab-Bae;Song, Se-Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.1
    • /
    • pp.27-35
    • /
    • 2015
  • Objectives: To investigate safety and health management, conditions in factories or facilities handling radiation-generating devices and radioactive isotopes were reviewed in terms of regulations of radiation safety control in Korea. Radiation exposure levels generated at those facilities were directly measured and evaluated for establishing an effective safety and health management plan. Methods: Government organizations with laws and systems of radiation safety and health were investigated and compared. There are three laws governing radiation-related employment such as occupational safety and health acts, nuclear safety acts, and medical service acts. We inspected 12 workplaces as research objects:four workplaces that manufacture and assemble semiconductor devices, three non-destructive inspection workplaces that perform inspections on radiation penetration, and five workplaces in textile and tire manufacturing. Monitoring of radiation exposure was performed through two methods. Spatial and surface monitoring using real-time radiation instruments was performed on each site handling radiation generating devices and radioactive isotopes in order to identify radiation leakage. Results: According to the occupational safety and health act, there is no legal obligation to measure ionizing radiation and set dose limits. This can cause confusion in the application of the laws, because the scopes and contents are different from each other. Surface dose rates in radiation generating devices such as implanters, thickness gages and accelerators, which were registered according to nuclear safety acts, using surveymeters, and seven of 36 facilities(19.4%) exceeded the international standards for surface radiation dose of $10{\mu}Sv/hr$. Conclusions: The results showed that occupational health and safety acts require a separate provision for measuring and assessing the radiation exposure of workers performing radiation work. Like noise, ionizing radiation will also periodically be controlled by including it in the object factors of work-environment measurement.

Factors affecting radiation safety management of dental hygienist and anxiety of radiation exposure (치과위생사의 방사선 안전관리 실태 및 피폭 불안감에 영향을 미치는 요인)

  • Lee, Hye-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.432-439
    • /
    • 2018
  • The purpose of this study was to analyze the knowledge, attitudes, safety management behavior, and radiation anxiety of dental hygienists and to analyze affecting factors in order to improve the level of radiation safety management and reduce anxiety. The study period consisted of 280 dental hygienists working in Jeollabuk-do from September 10 to October 31, 2017 using the SPSS 12.0 program, frequency, descriptive statistics, and multiple regression analysis. The average knowledge level of radiation quality control was 8.07, and the correct answer rate was 75.3%. The attitude level was 96.1%, and the radiation safety management behavior was 4.11 for the photographer and 4.58 for the 'always wear a TLD (personal dosimeter) during radiography'. Patient radiation safety management behavior was 3.86, and the highest was '4.69' to confirm pregnancy of the woman before radiography. Radiation-covered lining was 3.86, and was the highest at 4.13 for 'I am concerned about fetal health when I am pregnant'. Factors affecting radiation exposure anxiety were lower radiation safety management behaviors, lower age, lower radiographic experience, higher educational background, higher monthly income, and higher job title (p<0.05). Based on the above results, dental hygienists had strong knowledge, attitudes, and safety management practices for radiation quality control. However, since anxiety related to radiation exposure was high, it is possible to improve radiation safety management level and reduce radiation exposure anxiety.

Radiation Safety Management in Dental Radiology: Present Status and Future (임상가를 위한 특집 3 - 치과방사선검사의 방사선안전관리: 국내외 현황 및 전망)

  • Kim, Eun-Kyung
    • The Journal of the Korean dental association
    • /
    • v.52 no.3
    • /
    • pp.147-152
    • /
    • 2014
  • Recently the patient exposure by medical and dental x-ray examination has grown rapidly and diagnostic radiology represents the largest source of man-made radiation. For the patient protection, the principle of justification and optimization should be followed. All the radiographic examinations have to show a potential benefit to the patient weighing against the potential risk. After they are justified, the radiographic exposure should be kept as low as reasonably achievable, taking into account economic and social factors. For the safe use of radiation in dentistry, the radiation safety management in accordance with the legislation is important. The present status and the future of radiation safety management in dental radiology in Korea and other country will be discussed.