• Title/Summary/Keyword: Radiation electric field

Search Result 181, Processing Time 0.034 seconds

THE RELATIVE CONTRIBUTIONS OF ELECTRIC FIELD AND IONOSPHERIC CONDUCTANCE TO THE AURORAL ELECTROJETS (오로라 제트전류에 대한 전기장과 전기전도도의 상대적 기여도)

  • 조은아;안병호;문용재
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.87-98
    • /
    • 2000
  • We examine the relative contributions of the electric field and ionospheric conductance to the auroral electrojets. For this purpose we used magnetometer data obtained from the International Magnetospheric Study (IMS) meridian chains of observatories for March 17, 18, and 19, 1978. Based on the study by Allen & Kroehl (1975), we redefine the AU and AL indices by utilizing the magnetic disturbance data obtained from the AE stations located within limited magnetic local time (MLT) sectors; i.e., $1500\leq MLT\leq1800$ and$0000\leq MLT\leq0300$, respectively. The current densities of the eastward and westward electrojets are calculated based on the AU and AL indices thus defined. Under the assumption that the Hall conductance at the dusk sector is mainly caused by the solar EUV radiation, we estimate the electric field contributin to the AU index. Assuming further that electric field distributins at dawn and dusk sectors are comparable, it is also possible to estimate the contribution of the Hall conductance associated at the dusk sector is mainly caused by the solar EUV radiation, we estimate the electric field contribution to the AU index. Assuming further that electric field distributions at dawn and dusk sectors are comparable, it is also possible to estimate the contribution of the Hall conductance associated with auroral particle precipitation to the AL index. From this study it is noted that the electric fields and Hall conductances thus estimated show significant correlations with the AU and AL indices, respectively, suggesting that the AU and AL indices are closely associated with the directly driven and loading-unloading processes of substorms.

  • PDF

Numerical Modeling of Hydrazine-Fueled Arcjet Thruster (하이드라진(N2H4) 아크젯 추력기의 수치적 모델링)

  • Shin, Jae-Ryul;Lee, Dae-Sung;Oh, Se-Jong;Choi, J.-Y.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.907-915
    • /
    • 2008
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant Hydrazine (N2H4) as a working fluid. The Reynolds Averaged Navier-Stokes (RANS) equations are modified to analyze compressible flows with the thermal radiation and electric field. the Maxwell equation, which is loosely coupled with the fluid dynamic equations through the Ohm heating and Lorentz forces, is adopted to analyze the electric field induced by the electric arc. The chemical reactions of Hydrazine were assumed to be infinitely fast due to the high temperature field inside the arcjet thruster. The chemical and the thermal radiation models for the nitrogen-hydrogen mixture and optical thick media respectively, were incorporated with the fluid dynamic equations. The results show that performance indices of the arcjet thruster with 1kW arc heating are improved by amount of 180% in thrust and 200% in specific impulse more than frozen flow. In addition thermo-physical process inside the arcjet thruster is understood from the flow field results.

DEVELOPMENT OF THE DUAL COUNTING AND INTERNAL DOSE ASSESSMENT METHOD FOR CARBON-14 AT NUCLEAR POWER PLANTS

  • Kim, Hee-Geun;Kong, Tae-Young;Han, Sang-Jun;Lee, Goung-Jin
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.55-64
    • /
    • 2009
  • In a pressurized heavy water reactor (PHWR), radiation workers who have access to radiation controlled areas submit their urine samples to health physicists periodically; internal radiation exposure is evaluated by the monitoring of these urine samples. Internal radiation exposure at PHWRs accounts for approximately 20 $\sim$ 40% of total radiation exposure; most internal radiation exposure is attributed to tritium. Carbon-14 is not a dominant nuclide in the radiation exposure of workers, but it is one potential nuclide to be necessarily monitored. Carbon-14 is a low energy beta emitter and passes relatively easily into the body of workers by inhalation because its dominant chemical form is radioactive carbon dioxide ($^{14}CO_2$). Most inhaled carbon-14 is rapidly exhaled from the worker's body, but a small amount of carbon-14 remains inside the body and is excreted by urine. In this study, a method for dual analysis of tritium and carbon-14 in urine samples of workers at nuclear power plants is developed and a method for internal dose assessment using its excretion rate result is established. As a result of the developed dual analysis of tritium and carbon-14 in urine samples of radiation workers who entered the high radiation field area at a PHWR, it was found that internal exposure to carbon-14 is unlikely to occur. In addition, through the urine counting results of radiation workers who participated in the open process of steam generators, it was found that the likelihood of internal exposure to either tritium or carbon-14 is extremely low at pressurized water reactors (PWRs).

ELF 3D Magnetic Field and Eddy Current Calculation of Human Body Around Transmission Lines (송전선로 주변의 3차원 자기장 및 인체 유도 와전류 계산)

  • Myeong, Seong-Ho;Lee, Dong-Il;Sin, Gu-Yong;Han, In-Su;Park, Jong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.10
    • /
    • pp.485-491
    • /
    • 2002
  • Since Wertheimer and Leeper reported possible adverse health effects of magnetic field in 1979, worldwide researches on this issue have been conducted. More recently, the U.S. Congress instructed the NIEHS (National Institute of Environmental Health Sciences), NIH (National Institute of Health) and DOE (Department of Energy) to direct and manage EMF RAPID (Electric and Magnetic Fields Research and Public Information Dissemination) program aimed at providing scientific evidence to clarify the potential for health risks from exposure to extremely low frequency electric and magnetic fields(ELF-EMF). Although they concluded that the scientific evidence suggesting adverse health risks of ELF-EMF is weak, the exposure to ELF-EMF cannot be recognized as entirely safe. Therefore, the purpose of this article is to describe magnetic field 3-D calculation and to evluate eddy current of human body compare to international guide line recognized one of the basic problems. In open boundary problem, Magnetic field using FEM is not advantageous in the point of the division of area and the proposition of the fictitious boundary. Therefore, we induced the analytic equation of magnetic field calculations so but the finite line segment based on Biot-Savarts law Also, Eddy currents induced due to ELF-EMF magnetic field are computed. To calculate induced currents, impedance method is used in this paper, An example model of human head with resolution of 1.27cm is used. In this paper, We evaluate the magnetic field and eddy current of human head around 765 kV transmission lines compare to international guide line.

Effective Volume of the Korea Research Institute of Standards and Science Free Air Chamber L1 for Low-Energy X-Ray Measurement

  • Chul-Young Yi;Yun Ho Kim;Don Yeong Jeong
    • Progress in Medical Physics
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Purpose: To evaluate the effective volume of the Korea Research Institute of Standards and Science free air chamber (KRISS FAC) L1 used for the primary standard device of the low-energy X-ray air kerma. Methods: The mechanical dimensions were measured using a 3-dimensional coordinate measuring machine (3-d CMM, Model UMM 500, Carl Zeiss). The diameter of the diaphragm was measured by a ring gauge calibrator (Model KRISS-DM1, KRISS). The elongation of the collector length due to electric field distortion was determined from the capacitance measurement of the KRISS FAC considering the result of the finite element method (FEM) analysis using the code QuickField v6.4. Results: The measured length of the collector was 15.8003±0.0014 mm with a 68% confidence level (k=1). The aperture diameter of the diaphragm was 10.0021±0.0002 mm (k=1). The mechanical measurement volume of the KRISS FAC L1 was 1.2415±0.0006 cm3 (k=1). The elongated length of the collector due to the electric field distortion was 0.170±0.021 mm. Considering the elongated length, the effective measurement volume of the KRISS FAC L1 was 1.2548±0.0019 cm3(k=1). Conclusions: The effective volume of the KRISS FAC L1 was determined from the mechanically measured value by adding the elongated volume due to the electric field distortion in the FAC. The effective volume will replace the existing mechanically determined volume in establishing and maintaining the primary standard of the low-energy X-ray.

Prediction of Hot Gas Behavior in High Voltage Self-blast Circuit Breaker (초고압 복합소호 차단부의 열가스 거동 예측)

  • Kim, Jin-Bum;Yeo, Chang-Ho;Seo, Kyoung-Bo;Kweon, Ki-Yeoung;Lee, Hahk-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2494-2499
    • /
    • 2007
  • Self-blast circuit breakers utilize the energy dissipated by the arc itself to create the required conditions for arc quenching during the current zero. The high-current simulation provides information about the mixing process of the hot PTFE cloud with $SF_6$ gas which is difficult to access for measurement. But it is also hard to simulate flow phenomenon because the flow in interrupter with high current, $SF_6$-PTFE mixture vapor and complex physical behavior including radiation, calculation of electric field. Using a commercial computational fluid dynamics(CFD) package, the conservation equation for the gas and temperature, velocity and electric fields within breaker can be solved. Results show good agreement between the predicted and measured pressure rise in the thermal chamber.

  • PDF

Preparation and Characterization of Acrylic Acid-grafted Poly (vinyl alcohol) Hydrogel Actuators Using γ-ray Irradiation (감마선을 이용한 아크릴산이 그라프트된 폴리비닐알코올 하이드로겔 엑츄에이터의 제조)

  • An, Sung-Jun;Lim, Youn-Mook;Gwon, Hui-Jeong;Kim, Yun-Hye;Youn, Min-Ho;Kim, Chong-Yeal;Han, Dong-Hyun;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Active polymer gels expand and contract in response to certain environmental stimuli, such as the application of an electric field or a change in the pH level of the surroundings. This ability to achieve large, reversible deformations with no external mechanical loading has generated much interest in the use of these gels as biomimetic actuators and artificial muscles. In this study, poly (vinyl alcohol)(PVA) grafted acrylic acid monomer (PVA-g-AAc) hydrogels were prepared by $^{60}Co$ ${\gamma}-ray$ irradiation and their properties such as degree of grafting and weight swelling in electrostimulation as an artificial muscle and actuator were investigated.

An Analysis of the Transient's Social Behavior in the Radiological Emergency Planning Zone (방사선 비상계획구역에서의 일시거주자의 사회행동 특성 분석)

  • Bang, Sun-Young;Lee, Gab-Bock;Chung, Yang-Geun;Lee, Jae-Eun
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.2
    • /
    • pp.71-78
    • /
    • 2007
  • The purpose of this study is to analyze the social behavior, especially, the evacuation-related social behavior, of the transients in the radiological emergency planning zone(EPZ) of nuclear power plants. So, the meaning and kinds of the evacuation and the significance of the trip generation time(TGT) have been reviewed. The characteristics of the social behavior of the transient around Ulchin, Wolsong and Kori sites was analyzed through field surveys by using the questionnaire. The major findings of this research implications are as follows. First, for securing the safe evacuation, the alternatives to effectively provide the information on the evacuation warning may be prepared. Second, it is necessary to establish the education and training of transient's evacuation. Third, it is needed that the cause and background of the evacuation refusal are identified and the new response plan to secure transient's safety is prepared.

Mechanism of the X-ray and Soft Gamma-ray Emissions from the High Magnetic Field Pulsar: PSR B1509-58

  • Wang, Yu;Takata, Jumpei;Cheng, Kwong Sang
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.91-94
    • /
    • 2013
  • We use the outer gap model to explain the spectrum and the energy dependent light curves of the X-ray and soft ${\gamma}$-ray radiations of the spin-down powered pulsar PSR B1509-58. In the outer gap model, most pairs inside the gap are created around the null charge surface and the gap's electric field separates the opposite charges to move in opposite directions. Consequently, the region from the null charge surface to the light cylinder is dominated by the outflow current and that from the null charge surface to the star is dominated by the inflow current. We suggest that the viewing angle of PSR B1509-58 only receives the inflow radiation. The incoming curvature photons are converted to pairs by the strong magnetic field of the star. The X-rays and soft ${\gamma}$-rays of PSR B1509-58 result from the synchrotron radiation of these pairs. The magnetic pair creation requires a large pitch angle, which makes the pulse profile of the synchrotron radiation distinct from that of the curvature radiation. We carefully trace the pulse profiles of the synchrotron radiation with different pitch angles. We find that the differences between the light curves of different energy bands are due to the different pitch angles of the secondary pairs, and the second peak appearing at E > 10 MeV comes from the region near the star, where the stronger magnetic field allows the pair creation to happen with a smaller pitch angle.

Radiation characteristics of A Circular Loop antenna In Moving Media (운동매질내에서의 Circular Loop Antenna의 개체특성)

  • 최병하
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.7 no.3
    • /
    • pp.12-18
    • /
    • 1970
  • In this paper, the radiation characteristics of a Circular Loop Antenna is studied in a moving homogeneous, isotropic and linear media with a constant velocity much less than the speed of light. In Stuffing the radiation characteristics, Srst vector potential on the loop antenna is derived in the moving media by appling Maxwell-Minkowaski's theory. Next, using the derived relations, the electric and magnetic Seld is calculated for the spec-i Sed wave length ana velocity of the media. The Seld patterns in the moving media are compared with those of stationary media. We find that the intensity of the field is reduced in the direction of the media velocity and increased in the opposite direction only for the component parallel with the plane of the antenna. The deviation from the stationary media is proportional to the velocity of the media and the frequency of source current.

  • PDF