• Title/Summary/Keyword: Radiation doses

Search Result 1,257, Processing Time 0.033 seconds

Effect of Gamma Irradiation on the Splenocyte Proliferation and Cytokine Production of Chaga Mushroom Hot Water Extract (방사선 조사된 차가버섯 열수 추출물의 비장세포 증식능 및 사이토카인 발현에 미치는 영향)

  • Sung, Nak-Yun;Kim, Jae-Hun;Choi, Jong-Il;Song, Beom-Seok;Kim, Jae-Kyung;Park, Jong-Heum;Kim, Jin-Kyu;Lee, Ju-Woon
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.169-173
    • /
    • 2011
  • This study investigated the effect of gamma irradiation on immune enhancing activity of Chaga mushroom extract (CME). CME was prepared by hot water extraction at $70^{\circ}C$ for 4 hours and lyophilized. Lyophilized CME powder was dissolved with deionized water at $10mg\;ml^{-1}$ and then irradiated at the doses of 10, 30 and 50 kGy by cobalt 60 gamma irradiator. The gamma-irradiated and non-irradiated CME were treated into the splenocyte separated from mouse. Cell proliferation and cytokine production of the immune cells were increased by gamma-irradiated CME and these increases were more prominent when CME was irradiated at higher doses. Therefore, it is considered that gamma irradiation can be an effective method for improvement of the immunomodulating activity Chaga mushroom extract.

Analysis of Local Exposure Levels of Radiation Emitted from Soft X-ray Ionizers in LCD Manufacturing Processes (LCD 제조공정의 이온화 장치에 대한 전리방사선 지역노출특성 분석)

  • Kim, JoonBeom;Chung, Eun-Kyo;Jung, Kihyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.4
    • /
    • pp.342-352
    • /
    • 2021
  • Objectives: This study analyzed the local exposure levels of radiation emitted from the equipment with soft X-ray ionizers to investigate the radiation exposure levels in Liquid Crystal Display(LCD) manufacturing processes. Methods: This study measured the local radiation levels for the equipment installed in two LCD manufacturing companies. The equipment were installed at diverse processes and equipped with various number of ionizers. The local radiation levels were measured on the surface of the equipment by using direct reading equipment, and the measurements were converted into annual effective dose by considering the radiation exposure time of workers. Statistical analyses were performed to investigate the radiation exposure characteristics. Results: Annual effective doses for 97.6% of the equipment being measured were less than 1 mSv. However, the range of annual effective doses was 0.004 mSv ~ 2.167 mSv, which indicated a large variation among the equipment. Statistical analyses of the study found that this large variation was raised due to improper shielding of the equipment rather than process and/or equipment characteristics. To pinpoint the cause of this large variation in annual effective dose, this study improved the shielding of the equipment being radiated over 1 mSv and found that their average effective dose was reduced from 1.604 mSv to 0.126 mSv after shielding improvement. Conclusions: Relatively high exposure levels of radiation were observed in some equipment where their shielding were insufficiently thick and/or sealed. This finding implies that the shielding of the equipment is an important engineering countermeasure to control the radiation exposure levels in industries.

History of the Photon Beam Dose Calculation Algorithm in Radiation Treatment Planning System

  • Kim, Dong Wook;Park, Kwangwoo;Kim, Hojin;Kim, Jinsung
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.54-62
    • /
    • 2020
  • Dose calculation algorithms play an important role in radiation therapy and are even the basis for optimizing treatment plans, an important feature in the development of complex treatment technologies such as intensity-modulated radiation therapy. We reviewed the past and current status of dose calculation algorithms used in the treatment planning system for radiation therapy. The radiation-calculating dose calculation algorithm can be broadly classified into three main groups based on the mechanisms used: (1) factor-based, (2) model-based, and (3) principle-based. Factor-based algorithms are a type of empirical dose calculation that interpolates or extrapolates the dose in some basic measurements. Model-based algorithms, represented by the pencil beam convolution, analytical anisotropic, and collapse cone convolution algorithms, use a simplified physical process by using a convolution equation that convolutes the primary photon energy fluence with a kernel. Model-based algorithms allowing side scattering when beams are transmitted to the heterogeneous media provide more precise dose calculation results than correction-based algorithms. Principle-based algorithms, represented by Monte Carlo dose calculations, simulate all real physical processes involving beam particles during transportation; therefore, dose calculations are accurate but time consuming. For approximately 70 years, through the development of dose calculation algorithms and computing technology, the accuracy of dose calculation seems close to our clinical needs. Next-generation dose calculation algorithms are expected to include biologically equivalent doses or biologically effective doses, and doctors expect to be able to use them to improve the quality of treatment in the near future.

Reducing frame rate and pulse rate for routine diagnostic cerebral angiography: ALARA principles in practice

  • Arvin R. Wali;Sarath Pathuri;Michael G. Brandel;Ryan W. Sindewald;Brian R. Hirshman;Javier A. Bravo;Jeffrey A. Steinberg;Scott E. Olson;Jeffrey S. Pannell;Alexander Khalessi;David Santiago-Dieppa
    • Journal of Cerebrovascular and Endovascular Neurosurgery
    • /
    • v.26 no.1
    • /
    • pp.46-50
    • /
    • 2024
  • Objective: Diagnostic cerebral angiograms (DCAs) are widely used in neurosurgery due to their high sensitivity and specificity to diagnose and characterize pathology using ionizing radiation. Eliminating unnecessary radiation is critical to reduce risk to patients, providers, and health care staff. We investigated if reducing pulse and frame rates during routine DCAs would decrease radiation burden without compromising image quality. Methods: We performed a retrospective review of prospectively acquired data after implementing a quality improvement protocol in which pulse rate and frame rate were reduced from 15 p/s to 7.5 p/s and 7.5 f/s to 4.0 f/s respectively. Radiation doses and exposures were calculated. Two endovascular neurosurgeons reviewed randomly selected angiograms of both doses and blindly assessed their quality. Results: A total of 40 consecutive angiograms were retrospectively analyzed, 20 prior to the protocol change and 20 after. After the intervention, radiation dose, radiation per run, total exposure, and exposure per run were all significantly decreased even after adjustment for BMI (all p<0.05). On multivariable analysis, we identified a 46% decrease in total radiation dose and 39% decrease in exposure without compromising image quality or procedure time. Conclusions: We demonstrated that for routine DCAs, pulse rate of 7.5 with a frame rate of 4.0 is sufficient to obtain diagnostic information without compromising image quality or elongating procedure time. In the interest of patient, provider, and health care staff safety, we strongly encourage all interventionalists to be cognizant of radiation usage to avoid unnecessary radiation exposure and consequential health risks.

In vivo and in vitro Confirmation of Dose Homogeneity in Total Body Irradiation with Thermoluminescent Dosimeter (인체 및 인형 팬톰에서 전신방사선조사시 열형광선량계(TLD)를 이용한 선량분포 균일성 확인)

  • Chie Eui Kyu;Park Suk Won;Kang Wee-Saing;Kim Il Han
    • Radiation Oncology Journal
    • /
    • v.17 no.4
    • /
    • pp.321-328
    • /
    • 1999
  • Purpose : Total body irradiation (TBI) or whole body irradiation is used to acquire immune suppression, to treat malignant lymphoma and leukemia, and as an conditioning regimen for bone marrow transplantation. For these purposes, many methods were developed to obtain homogenous dose distribution. The objective of this study was to analyze and confirm the accuracy and the homogeneity of the treatment setup, the parallel opposed lateral technique, currently used in Seoul National University Hospital. Materials and Metheods : Surface dose data, measured with a thermoluminescent dosimeter, of 8 patients among 10 patients, who were given total body irradiation with the parallel opposed lateral technique between September 1996 to August 1998, at Seoul National University Hospital were analyzed. Surface doses were measured at the head, neck, axilla, thigh, and ankle level. Surface and midline doses were measured with similar set-up and technique in the Humanoid phantom. Results : Measured surface doses relative to prescribed dose for the head, neck, axilla, thight, and ankle leve were $91.3{\pm}7.8,{\;}98.3{\pm}7.5,{\;}95.1{\pm}6.3,{\;}98.3{\pm}5.5$, and $95.3{\pm} 6.3\%$, respectively. The midline doses of the head, neck, axilla, thigh, and ankle level estimated from the surface-to-midline ratios in the Humanoid Phantom were $103.4{\pm}9.0,{\;}107.8{\pm}10.5,{\;}91.1{\pm}6.1,{\pm} 93.8{\pm}4.5,{\;}and{\;}104.5{\pm}9.3\%$, respectively. Measured surface doses and estimated midline doses ranged from $-8.9\%$ to $+7.8\%$. Midline doses at the neck and the axilia level deviated more than $5\%$ from the prescribed doses. The difference of the estimated midline doses at the neck and the axilla level and the actual doses were attributed to the thickness differences between the Humanoid phantom and the patients. Conclusion Distribution of the midline doses as well as the suface doses were measured to be within $-8.7\~{\pm}7.8\%$ range. Actual dose distribution in the patient is expected to be better than the measured dose range mainly attributed to thickness difference between the patient and the Humanoid phantom.

  • PDF

Dosimetric Comparison of Three-Dimensional Conformal, Intensity-Modulated Radiotherapy, Volumetric Modulated Arc Therapy, and Dynamic Conformal Arc Therapy Techniques in Prophylactic Cranial Irradiation

  • Ismail Faruk Durmus;Dursun Esitmez;Guner Ipek Arslan;Ayse Okumus
    • Progress in Medical Physics
    • /
    • v.34 no.4
    • /
    • pp.41-47
    • /
    • 2023
  • Purpose: This study aimed to dosimetrically compare the technique of three-dimensional conformal radiotherapy (3D CRT), which is a traditional prophylactic cranial irradiation method, and the intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques used in the last few decades with the dynamic conformal arc therapy (DCAT) technique. Methods: The 3D CRT, VMAT, IMRT, and DCAT plans were prepared with 25 Gy in 10 fractions in a Monaco planning system. The target volume and the critical organ doses were compared. A comparison of the body V2, V5, and V10 doses, monitor unit (MU), and beam on-time values was also performed. Results: In planned target volume of the brain (PTVBrain), the highest D99 dose value (P<0.001) and the most homogeneous (P=0.049) dose distribution according to the heterogeneity index were obtained using the VMAT technique. In contrast, the lowest values were obtained using the 3D CRT technique in the body V2, V5, and V10 doses. The MU values were the lowest when DCAT (P=0.001) was used. These values were 0.34% (P=0.256) lower with the 3D CRT technique, 66% (P=0.001) lower with IMRT, and 72% (P=0.001) lower with VMAT. The beam on-time values were the lowest with the 3D CRT planning (P<0.001), 3.8% (P=0.008) lower than DCAT, 65% (P=0.001) lower than VMAT planning, and 76% (P=0.001) lower than IMRT planning. Conclusions: Without sacrificing the homogeneous dose distribution and the critical organ doses in IMRTs, three to four times less treatment time, less low-dose volume, less leakage radiation, and less radiation scattering could be achieved when the DCAT technique is used similar to conventional methods. In short, DCAT, which is applicable in small target volumes, can also be successfully planned in large target volumes, such as the whole-brain.

Bias-corrected Hp(10)-to-Organ-Absorbed Dose Conversion Coefficients for the Epidemiological Study of Korean Radiation Workers

  • Jeong, Areum;Kwon, Tae-Eun;Lee, Wonho;Park, Sunhoo
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.3
    • /
    • pp.158-166
    • /
    • 2022
  • Background: The effects of radiation on the health of radiation workers who are constantly susceptible to occupational exposure must be assessed based on an accurate and reliable reconstruction of organ-absorbed doses that can be calculated using personal dosimeter readings measured as Hp(10) and dose conversion coefficients. However, the data used in the dose reconstruction contain significant biases arising from the lack of reality and could result in an inaccurate measure of organ-absorbed doses. Therefore, this study quantified the biases involved in organ dose reconstruction and calculated the bias-corrected Hp(10)-to-organ-absorbed dose coefficients for the use in epidemiological studies of Korean radiation workers. Materials and Methods: Two major biases were considered: (a) the bias in Hp(10) arising from the difference between the dosimeter calibration geometry and the actual exposure geometry, and (b) the bias in air kerma-to-Hp(10) conversion coefficients resulting from geometric differences between the human body and slab phantom. The biases were quantified by implementing personal dosimeters on the slab and human phantoms coupled with a Monte Carlo method and considered to calculate the bias-corrected Hp(10)-to-organ-absorbed dose conversion coefficients. Results and Discussion: The bias in Hp(10) was significant for large incident angles and low energies (e.g., 0.32 for right lateral at 218 keV), whereas the bias in dose coefficients was significant for the posteroanterior (PA) geometry only (e.g., 0.79 at 218 keV). The bias-corrected Hp(10)-to-organ-absorbed dose conversion coefficients derived in this study were up to 3.09- fold greater than those from the International Commission on Radiological Protection publications without considering the biases. Conclusion: The obtained results will aid future studies in assessing the health effects of occupational exposure of Korean radiation workers. The bias-corrected dose coefficients of this study can be used to calculate organ doses for Korean radiation workers based on personal dose records.

The Radiation Resistance Evaluation of Electrically Insulating Polymers

  • Lee, Dong-Hoon;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak;Im, Don-Sun;Kim, Ki-Yup;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.237-242
    • /
    • 2011
  • In this research, the radiation resistance of ethylene propylene rubber (EPR) and chlorosulfonated polyethylene (CSPE) which can be used as a insulating materials of for electrical cable in the nuclear power plant were investigated. EPR and CSPE were irradiated by ${\gamma}$-ray at various doses ranging from 50 to 500 kGy at room temperature in air. The irradiated EPR and CSPE was investigated in terms of activation energy, mechanical properties, and oxidation stability. The experimental results revealed that CSPE exhibited the higher radiation resistance in comparison to that of EPR.

Level of radiation dose in university hospital non-insured private health screening programs in Korea

  • Lee, Yun-Keun
    • Environmental Analysis Health and Toxicology
    • /
    • v.31
    • /
    • pp.7.1-7.6
    • /
    • 2016
  • Objectives The aim of this study is to evaluate radiation exposure resulting from the comprehensive health examinations of selected university hospital programs and to present basic data for research and management strategies on the health effects of medical radiation exposure. Methods Radiation-based diagnostic studies of the comprehensive health examination programs of ten university hospitals in Seoul, Korea, as introduced in their websites, were analyzed. The medical radiation studies of the programs were reviewed by radiologists. Only the effective doses of the basic studies were included in the analysis. The optional studies of the programs were excluded. Results Among the 190 comprehensive health examination programs, 132 programs (69.5%) included computed tomography studies, with an average of 1.4 scans. The average effective dose of radiation by program was 3.62 mSv for an intensive program for specific diseases; 11.12 mSv for an intensive program for cancer; 18.14 mSv for a premium program; and 24.08 mSv for an overnight program. A higher cost of a programs was linked to a higher effective dose (r=0.812). The effective doses of the examination programs for the same purposes differed by as much as 2.1 times by hospital. Inclusion of positron emission tomography-computed tomography was the most critical factor in determining the level of effective dose. Conclusions It was found that radiation exposure dose from comprehensive health exam programs targeted for an asymptomatic, healthy public reached between 3.6 and 24 times the annual dose limit for the general public. Relevant management policies at the national level should be provided to minimize medical radiation exposure.

Review of National Diagnostic Reference Levels for Interventional Procedures

  • Lee, Min Young;Kwon, Jae;Ryu, Gang Woo;Kim, Ki Hoon;Nam, Hyung Woo;Kim, Kwang Pyo
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.75-88
    • /
    • 2019
  • Diagnostic reference level (DRL) is employed to optimize the radiation doses of patients. The objective of this study is to review the DRLs for interventional procedures in Korea and abroad. Literature review was performed to investigate radiation dose index and measurement methodology commonly used in DRL determination. Dose area product (DAP) and fluoroscopy time within each major procedure category were systematically abstracted and analyzed. A wide variation was found in the radiation dose. The DAP values and fluoroscopy times ranged 0.01-3,081 Gy·㎠ and 2-16,878 seconds for all the interventional procedures, 8.5-1,679 Gy·㎠ and 32-5,775 seconds for the transcatheter arterial chemoembolization (TACE), and 0.1-686 Gy·㎠ and 16-6,636 seconds for the transfemoral cerebral angiography (TFCA), respectively. The DRL values of the DAP and fluoroscopy time were 238 Gy·㎠ and 1,224 seconds for the TACE and 189 Gy·㎠ and 686 seconds for the TFCA, respectively. Generally, the DRLs of Korea were lower than those of other developed countries, except for the percutaneous transluminal angioplasty with stent in arteries of the lower extremity (LE PTA and stent), aneurysm coil embolization, and Hickman insertion procedures. The wide variation in the radiation doses of the different procedures suggests that more attention must be paid to reduce unnecessary radiation exposure from medical imaging. Furthermore, periodic nationwide survey of medical radiation exposures is necessary to optimize the patient dose for radiation protection, which will ultimately contribute to patient dose reduction and radiological safety.