• Title/Summary/Keyword: Radiation dose rate

Search Result 1,251, Processing Time 0.035 seconds

DOSE AND DOSE RATE EFFECTS OF IRRADIATION ON BLOOD COUNT AND CYTOKINE LEVEL IN BALB/c MICE

  • Son, Yeonghoon;Jung, Dong Hyuk;Kim, Sung Dae;Lee, Chang Geun;Yang, Kwangmo;Kim, Joong Sun
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.179-184
    • /
    • 2013
  • The biological effects of radiation are dependent on the dose rate and dose of radiation. In this study, effects of dose and dose rate using whole body radiation on plasma cytokines and blood count from male BALB/c mice were evaluated. We examined the blood and cytokine changes in mice exposed to a low (3.49m Gy $h^{-1}$) and high (2.6 Gy $min^{-1}$) dose rate of radiation at a total dose of 0.5 and 2 Gy, respectively. Blood from mice exposed to radiation were evaluated using cytokine assays and complete blood count. Peripheral lymphocytes and neutrophils decreased in a dose dependent manner following high dose rate radiation. The peripheral lymphocytes population remained unchanged following low dose rate radiation; however, the neutrophils population increased after radiation. The sera from these mice exhibited elevated levels of flt3 ligand and granulocyte-colony-stimulating factor (G-CSF), after high/low dose rate radiation. These results suggest that low-dose-rate radiation does not induce blood damage, which was unlike high-dose-rate radiation treatment; low-dose-rate radiation exposure activated the hematopoiesis through the increase of flt3 ligand and G-CSF.

A Review of Dose Rate Meters as First Responders to Ionising Radiation

  • Akber, Aqeel Ahmad;Wiggins, Matthew Benfield
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.3
    • /
    • pp.97-102
    • /
    • 2019
  • Background: Dose rate meters are the most widely used, and perhaps one of the most important tools for the measurement of ionising radiation. They are often the first, or only, device available to a user for an instant check of radiation dose at a certain location. Throughout the world, radiation safety practices rely strongly on the output of these dose rate meters. But how well do we know the quality of their output? Materials and Methods: This review is based on the measurements 1,158 commercially available dose rate meters of 116 different makes and models. Expected versus the displayed dose patterns and consistency was checked at various dose rates between $5{\mu}Gy{\cdot}h^{-1}$ and $2mGy{\cdot}h^{-1}$. Samples of these meters were then selected for further investigation and were exposed to radiation sources covering photon energies from 50 keV to 1.5 MeV. The effect of detector orientation on its reading was also investigated. Rather than focusing on the angular response distribution that is often reported by the manufacturer of the device, this study focussed on the design ergonomics i.e. the angles that the operator will realistically use to measure a dose rate. Results and Discussion: This review shows the scope and boundaries of the ionising radiation dose rate estimations that are made using commonly available meters. Observations showed both inter and intra make and model variations, occasional cases of instrument failure, instrument walk away, and erroneous response. Conclusion: The results indicate the significance of selecting and maintaining suitable monitors for specific applications in radiation safety.

Dose Distribution of Rectum and Bladder in Intracavitary Irradiation (자궁경부암 강내 방사선 조사장치에 의한 직장 및 방광의 피폭선량 평가)

  • Chu S. S.;Oh W. Y.;Suh C. O.;Kim G. E.
    • Radiation Oncology Journal
    • /
    • v.2 no.2
    • /
    • pp.261-270
    • /
    • 1984
  • The intrauterine irradiation is essential to achieve adequate tumor dose to central tumor mass of uterine malignancy in radiotherapy. The complications of pelvic organ are known to be directly related to radiation dose and physical parameters. The simulation radiation and medical records of 203 patients who were treated with intrauterine irradiation from Feb. 1983 to Oct. 1983, were critically analized. The physical parameters to include distances between lateral walls of vaginal fornices, longitudinal and lateral angles of tandem applicator to the body axis, the distance from the external os of uterine cervix to the central axis of ovoids were measured for low dose rate irradiation system and high dose rate remote control afterloading system. The radiation doses and dose distributions within cervical area including interesting points and bladder, rectum, according to sources arrangement and location of applicator, were estimated with personal computer. Followings were summary of study results ; 1. In distances between lateral walls of vaginal fornices, the low dose rate system showed as $4\~7cm$ width and high dose rate system showed as $5\~6cm$. 2. In horizontal angulation of tandem to body axis, the low dose rate system revealed mid position$64.6\%$, left deviation $19.2\%$and right deviation $16.2\%$. 3. In longitudinal angulation of tandem to body axis, the mid position was $11.8\%$ and anterior angulation $88.2\%$ in low dose rate system but in high dose rate system, anterior angulation was $98.5\%$. 4. Down ward displacement of ovoids below external os was only $3\%$ in low dose rate system and $66.7\%$ in high dose rate system. 5. In radiation source arrangement, the most activities of tandem and ovoid were 35 by 30 in low dose rate system but 50 by 40 in high dose rate system. 6. In low and high dose rate system, the total doses an4 TDF were 50, 70 Gy and 141, 123, including 40 Gy external irradiation. 7. The doses and TDF in interesting points Co, B, were 93, 47 Gy and 230, 73 in high dose rate system but in low doss rate system, 123, 52 Gy and 262, 75 respectively. 8. Doses and TDF in bladder and rectum were 70, 68 Gy and 124, 120 in low dose rate system, but in high dose rate system, 58, 64 Gy 98, 110 respectively, and then grades of injuries in bladder and rectum were 25, $30\%$ and 18, $23\%$ respectively.

  • PDF

AN ASSESSMENT OF THE RADIATION DOSE RATE DUE TO AN OCCURRENCE OF THE DEFECT ON THE SPENT NUCLEAR FUEL ROD

  • Lee, Sang-Hun;Moon, Joo-Hyun
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.144-150
    • /
    • 2009
  • This study examines how much the radiation dose rate around it varies if a crack occurs on the spent nuclear fuel rod. The spent nuclear fuel rod to be examined is that of Kori unit 3&4. The source terms are evaluated using the ORIGEN-ARP that is part of the version 5.1 of the SCALE package. The radiation dose rate is assessed using the TORT. To check if the structure of a fuel rod is appropriately modeled in the TORT calculation, the calculation results by the TORT are compared with those by the ANISN for the same case. From the code simulation, it is known that if a crack occurs on the spent nuclear fuel rod, the neutron dose rate varies depending on what material is the crack filled with, but the gamma dose rate varies irrespective of type of the material that the crack is filled with.

A Study on the Environmental Radiation of Concrete Apartments and Neighborhood Living Facilities (콘크리트 공동주택과 근린생활 시설의 환경방사선에 관한 연구)

  • Ji, Tae-Jeong;Kwak, Byung-Joon;Min, Byung-In
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.100-104
    • /
    • 2009
  • In this study, the space gamma dose rates in the apartments structured with concrete were measured in accordance with construction year. In addition, the environmental radiation rates coming from the subway platforms and the road tunnels were analyzed in the equivalent dose by multiplying the absorbed dose with the radiation weighting factors. The space gamma dose rates measured in apartments were higher than those of outdoor which was $0.08{\sim}0.11uSv/h$ in the natural conditions. Especially, the older construction year is, the higher becomes space gamma dose rate. The average gamma dose rates in the subway platforms were measured. In the case of Busan and Daegu subway, the earlier the opening year is, the higher becomes dose rate. However, the dose rates of Seoul subway Lines were high overall, regardless of opening year. Seoul subway Line 6 showed the highest value of 0.21uSv/h. The gamma dose rate in road tunnels was higher than one of the outdoor and increased with opening year like as apartment. In dose rate comparison of the concrete structures with the outdoor, therefore, the space gamma dose rate of indoor is higher than one of the outdoor and the older structures have a higher dose rate.

Assessment of External Radiation Dose for Workers in Domestic Water Treatment Facility According to the Working Type (국내 수처리시설 종사자 작업유형에 따른 외부피폭방사선량 평가)

  • Seong Hun Jeon;Seong Yeon Lee;Hyeok Jae Kim;Min Seong Kim;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.2
    • /
    • pp.151-160
    • /
    • 2023
  • The International Atomic Energy Agency (IAEA) proposes 11 industries that handle Naturally Occurring Radioactive Material (NORM) that are considered to need management. A water treatment facility is one of the above industries that takes in groundwater and produces drinking water through a water treatment process. Groundwater can accumulate natural radionuclides such as uranium and thorium in raw water by contacting rocks or soil containing natural radionuclides. Therefore, there is a possibility that workers in water treatment facilities will be exposed due to the accumulation of natural radionuclides in the water treatment process. The goal of this study is to evaluate the external radiation dose according to the working type of workers in water treatment facilities. In order to achieve the above goal, the study was conducted by dividing it into 1) analysis of the exposure environment, 2) measurement of the external radiation dose rate 3) evaluation of the external radiation dose. In the stage of analyzing the exposure environment, major processes that are expected to occur significantly were derived. In the measurement stage of the external radiation dose rate, a map of the external radiation dose rate was prepared by measuring the spatial radiation dose rate in major processes. Through this, detailed measurement points were selected considering the movement of workers. In the external radiation dose evaluation stage, the external radiation dose was evaluated based on the previously derived external radiation dose rate and working time. As a result of measuring the external radiation dose rate at the detailed points of water treatment facilities A to C, it was 1.90×10-1 to 3.75×100 μSv h-1, and the external radiation dose was analyzed as 3.27×10-3 to 9.85×10-2 mSv y-1. The maximum external radiation dose appeared during the disinfection and cleaning of activated carbon at facility B, and it is judged that natural radionuclides were concentrated in activated carbon. It was found that the external radiation dose of workers in the water treatment facility was less than 1mSv y-1, which is about 10% of the dose limit for the public. As a result of this study, it was found that the radiological effect of external radiation dose of domestic water treatment facility workers was insignificant. The results are expected to contribute as background data to present optimized safety management measures for domestic NORM industries in the future.

THE SHORT-TERM EFFECTS OF LOW-DOSE-RATE RADIATION ON EL4 LYMPHOMA CELL

  • Bong, Jin-Jong;Kang, Yu-Mi;Shin, Suk-Chul;Choi, Moo-Hyun;Choi, Seung-Jin;Lee, Kyung-Mi;Kim, Hee-Sun
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.2
    • /
    • pp.56-62
    • /
    • 2012
  • To determine the biological effects of low-dose-rate radiation ($^{137}Cs$, 2.95 mGy/h) on EL4 lymphoma cells during 24 h, we investigated the expression of genes related to apoptosis, cell cycle arrest, DNA repair, iron transport, and ribonucleotide reductase. EL4 cells were continuously exposed to low-dose-rate radiation (total dose: 70.8 mGy) for 24 h. We analyzed cell proliferation and apoptosis by trypan blue exclusion and flow cytometry, gene expression by real-time PCR, and protein levels with the apoptosis ELISA kit. Apoptosis increased in the Low-dose-rate irradiated cells, but cell number did not differ between non- (Non-IR) and Low-dose-rate irradiated (LDR-IR) cells. In concordance with apoptotic rate, the transcriptional activity of ATM, p53, p21, and Parp was upregulated in the LDR-IR cells. Similarly, Phospho-p53 (Ser15), cleaved caspase 3 (Asp175), and cleaved Parp (Asp214) expression was upregulated in the LDR-IR cells. No difference was observed in the mRNA expression of DNA repair-related genes (Msh2, Msh3, Wrn, Lig4, Neil3, ERCC8, and ERCC6) between Non-IR and LDR-IR cells. Interestingly, the mRNA of Trfc was upregulated in the LDR-IR cells. Therefore, we suggest that short-term Low-dose-rate radiation activates apoptosis in EL4 lymphoma cells.

Evaluating the Effects of Dose Rate on Dynamic Intensity-Modulated Radiation Therapy Quality Assurance

  • Kim, Kwon Hee;Back, Tae Seong;Chung, Eun Ji;Suh, Tae Suk;Sung, Wonmo
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.116-121
    • /
    • 2021
  • Purpose: To investigate the effects of dose rate on intensity-modulated radiation therapy (IMRT) quality assurance (QA). Methods: We performed gamma tests using portal dose image prediction and log files of a multileaf collimator. Thirty treatment plans were randomly selected for the IMRT QA plan, and three verification plans for each treatment plan were generated with different dose rates (200, 400, and 600 monitor units [MU]/min). These verification plans were delivered to an electronic portal imager attached to a Varian medical linear accelerator, which recorded and compared with the planned dose. Root-mean-square (RMS) error values of the log files were also compared. Results: With an increase in dose rate, the 2%/2-mm gamma passing rate decreased from 90.9% to 85.5%, indicating that a higher dose rate was associated with lower radiation delivery accuracy. Accordingly, the average RMS error value increased from 0.0170 to 0.0381 cm as dose rate increased. In contrast, the radiation delivery time reduced from 3.83 to 1.49 minutes as the dose rate increased from 200 to 600 MU/min. Conclusions: Our results indicated that radiation delivery accuracy was lower at higher dose rates; however, the accuracy was still clinically acceptable at dose rates of up to 600 MU/min.

THE FACTORS WHICH AFFECT THE EXTERNAL RADIATION DOSE RATE OF PET-CT PATIENTS

  • Cho, Ihn Ho;Kim, Su Jin;Han, Eun Ok
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.4
    • /
    • pp.231-236
    • /
    • 2012
  • This study derived measures to reduce exposure doses by identifying factors which affect the external radiation dose rate of patients treated with radiopharmaceuticals for PET-CT tests. The external radiation dose rates were measured on three parts of head, thorax and abdomen at a distance of 50cm from the surface of 60 PET-CT patients. It showed there are changes in factors affecting the external radiation dose rate over time after the administration of F-18 FDG. The external radiation dose rate was lower in the patients with more water intake than those with less water intake before the injection of radiopharmaceuticals at all three points: right after the injection of radiopharmaceuticals (average 4.17 mins), after the pre-PEET-CT urination step (average 77.47 mins), and right after the PET-CT test (average 114.15 mins). The study also found there is a need to increase the amount of water intake before the injection of radiopharmaceuticals in order to maintain a low external radiation dose rate in patients. This strategy is only possible under the assumption that the quality of the video has not changed after conducting this study on the relations between the image and quality. This study also found a need to use radiopharmaceuticals with the minimum amount needed for each patient because F-FDG doses affects the external radiation dose rate at the point right after the injection of radiopharmaceuticals. Urination frequency was the most significant factor to affect the external radiation dose rates at the point right after the PET-CT test and the point after the pre-PET-CT urination step. There is a need to realize the strategy to increase the urination frequency of patients to maintain the external radiation dose rate low (average 77.47 mins) before and after the injection of radiopharmaceuticals. In addition, at this point, there is a need to take advantage of personal strategies because the external radiation dose rate is lower if the fasting time is shorter, the contrast medium is used, and the amount of water intake is increased after the administration of radiopharmaceuticals. Finally this study found the need to be able to generalize these findings through an in-depth research on the factors affecting the external radiation dose rate, which includes radiopharmaceutical dose, urination frequency, the amount of water intake, fasting time and the use of contrast medium.

Use of big data for estimation of impacts of meteorological variables on environmental radiation dose on Ulleung Island, Republic of Korea

  • Joo, Han Young;Kim, Jae Wook;Jeong, So Yun;Kim, Young Seo;Moon, Joo Hyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4189-4200
    • /
    • 2021
  • In this study, the relationship between the environmental radiation dose rate and meteorological variables was investigated with multiple regression analysis and big data of those variables. The environmental radiation dose rate and 36 different meteorological variables were measured on Ulleung Island, Republic of Korea, from 2011 to 2015. Not all meteorological variables were used in the regression analysis because the different meteorological variables significantly affect the environmental radiation dose rate during different periods, and the degree of influence changes with time. By applying the Pearson correlation analysis and stepwise selection methods to the big dataset, the major meteorological variables influencing the environmental radiation dose rate were identified, which were then used as the independent variables for the regression model. Subsequently, multiple regression models for the monthly datasets and dataset of the entire period were developed.