• Title/Summary/Keyword: Radiation dose effect

Search Result 1,109, Processing Time 0.022 seconds

Shielding 140 keV Gamma Ray Evaluation of Dose by Depth According to Thickness of Lead Shield (140 keV 감마선 차폐 시 납 차폐체 두께에 따른 깊이별 선량 평가)

  • Kim, Ji-Young;Lee, Wang-Hui;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.129-134
    • /
    • 2018
  • The present study made a phantom for gamma ray of 140 keV radiated from $^{99m}Tc$, examined shielding effect of lead by thickness of the shielding material, and measured surface dose and depth dose by body depth. The OSL Nano Dot dosimeter was inserted at 0, 3, 15, 40, 90, and 180 mm depths of the phantom, and when there was no shield, 0.2 mm lead shield, 0.5 mm lead shield, The depth dose was measured. Experimental results show that the total cumulative dose of dosimeters with depth is highest at 366.24 uSv without shield and lowest at 94.12 uSv with 0.5 mm lead shield. The shielding effect of 0.2 mm lead shielding was about 30.18% and the shielding effect of 0.5 mm lead shielding was 74.30%, when the total sum of the accumulated doses of radiation dosimeter was 100%. The phantom depth and depth dose measurements showed the highest values at 0 mm depth for all three experiments and the dose decreases as the depth increases. This study proved that the thicker a shielding material, the highest its shielding effect is against gamma ray of 140 keV. However, it was known that shielding material can't completely shield a body from gamma ray; it reached deep part of a human body. Aside from the International Commission on Radiation Units and Measurements (ICRU) recommending depth dose by 10 mm in thickness, a plan is necessary for employees working in department of nuclear medicine where they deal with gamma ray, which is highly penetrable, to measure depth dose by body depth, which can help them manage exposed dose properly.

Effect of Reducing Scattering Radiation Exposure of Medical Staffs When Additional Shielding is Used in Interventional Radiology (중재적 방사선시술에서 부가 차폐체 사용 시 종사자의 산란선 피폭 감소효과)

  • Kim, Min-Jun;Baek, Kang-Nam;Kim, Sungchul
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.629-633
    • /
    • 2021
  • This article is designed to look into the radiation exposure dose to each body part and the shielding effect for workers using an additional shielding to reduce their radiation exposured by scattering radiation which is generated in a space between the operating table and lead curtain during interventional radiology(IR) procedures. After placing a human phantom on the table of SIEMENS' angiography machine, the following measurements were taken, depending on the presence of an additional shield of lead equivalent of 0.25 mmPb, manufactured for this purpose: dose to gonad, dose to an area where the personal dosimeter is placed, and dose to an area of eye lens is located. An ion chamber(chamber volume 1,800 cc) was utilized to measure scattering radiation. The two imaging tests were carried out as follows: fluoroscopy of the abdomen (66 kV, 100 mA, 60 seconds) and of the head (70 kV, 65 mA, 60 seconds); and digital subtraction angiography(DSA) of the abdomen (67 kV, 264 mA, 20 seconds) and of the head (79 kV, 300 mA, 20 seconds). In all the experiments, the shielding efficiency of the gonad position was the largest at 59.8%. In case an additional shielding was used as protection against scattering radiation that came through the operating table and the lead curtain during an IR, the radiation shielding efficiency was estimated to be up to 59.8%, leading to a conclusion that its presence may effectively reduce the radiation exposure dose of medical staffs.

Radiation Shielding Effect due to Cracks in Concrete Silo Dry Storage Systems

  • Donghee Lee;Sunghwan Chung;Taehyung Na
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.3
    • /
    • pp.377-385
    • /
    • 2024
  • The concrete silo dry storage system, which has been in operation at the Wolsong NPP site since 1992, consists of a concrete structure, a steel liner plate in the inner space, and a fuel basket. The silo system's concrete structure must maintain structural integrity as well as adequate radiation shielding performance against the high radioactivity of spent nuclear fuel stored inside the storage system. The concrete structure is directly exposed to the external climatic environment in the storage facility and can be expected to deteriorate over time owing to the heat of spent nuclear fuel, as well as particularly cracks in the concrete structure. These cracks may reduce the radiation shielding performance of the concrete structure, potentially exceeding the silo system's allowable radiation dose rate limits. For specimens with the same composition and physical properties as silo's concrete structures, cracks were forcibly generated and then irradiated to measure the change in radiation dose rate to examine the effect of cracks in concrete structures on radiation shielding performance, and in the current state, the silo system maintains radiation shielding performance.

A Study on the Exposure and Free Space Scattered Dose in Radiography (X선 촬영시 피폭선량 및 실내공간선량에 관한 연구)

  • Ahn, Bong-Seon;Lee, Kyu-Eun;Seon, Jong-Ryul
    • Journal of radiological science and technology
    • /
    • v.21 no.2
    • /
    • pp.26-30
    • /
    • 1998
  • We tried to study in order to furnish the data for medical exposure dose and scattered ray in radiography. As the tables(from 1 to 3) show, we can presume, by means of a concrete numerical value, the amount of results affected by patient radiation exposure dose and somatic effect in radiography. However, there are many difficulties in the difference of exposure factor in each hospital, the accuracy of measuring by tracebility, shortage of exposure dose data especially in the area of children, and portable radiography, etc. In the radiation examination, it is considered if the gained benefit to the patient due to radiation is more than the risk of radiation, then the medical exposure is thought to be justified. Therefore, the radiotechnologists should continually make an effort to develop and study new techniques so as to reduce patient exposure dose.

  • PDF

Antioxidant Effect of Annexin A-1 Induced by Low-dose Ionizing Radiation in Adipose-derived Stem Cells

  • You, Ji-Eun;Lee, Seung-Wan;Kim, Keun-Sik;Kim, Pyung-Hwan
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.249-255
    • /
    • 2020
  • Radiation therapy is one of the primary options for the treatment of malignant tumors. Even though it is an effective anti-cancer treatment, it can cause serious complications owing to radiation-induced damage to the normal tissue around the tumor. It was recently reported that normal stem cell response to the genotoxic stress of ionizing radiation can boost the therapeutic effectiveness of radiation by repairing damaged cells. Therefore, we focused on annexin A-1 (ANXA1), one of the genes induced by low-dose irradiation, and assessed whether it can protect adipose-derived stem cells (ADSCs) against oxidative stress-induced damage caused by low-dose irradiation and improve effectively cell survival. After confirming ANXA1 expression in ADSCs transfected with an ANXA1 expression vector, exposure to hydrogen peroxide (H2O2) was used to mimic cellular damage induced by a chronic oxidative environment to assess cell survival under oxidative conditions. ANXA1-transfected ADSCs demonstrated that increased viability compared with un-transfected cells and exhibited enhanced anti-oxidative properties. Taken together, these results suggest that ANXA1 could be used as a potential therapeutic target to improve the survival of stem cells after low-dose radiation treatment.

Dosimetric Effects of Air Pocket during Magnetic Resonance-Guided Adaptive Radiation Therapy for Pancreatic Cancer

  • Jin, Hyeongmin;Kim, Dong-Yun;Park, Jong Min;Kang, Hyun-Cheol;Chie, Eui Kyu;An, Hyun Joon
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.104-111
    • /
    • 2019
  • Purpose: Online magnetic resonance-guided adaptive radiotherapy (MRgART), an emerging technique, is used to address the change in anatomical structures, such as treatment target region, during the treatment period. However, the electron density map used for dose calculation differs from that for daily treatment, owing to the variation in organ location and, notably, air pockets. In this study, we evaluate the dosimetric effect of electron density override on air pockets during online ART for pancreatic cancer cases. Methods: Five pancreatic cancer patients, who were treated with MRgART at the Seoul National University Hospital, were enrolled in the study. Intensity modulated radiation therapy plans were generated for each patient with 60Co beams on a ViewrayTM system, with a 45 Gy prescription dose for stereotactic body radiation therapy. During the treatment, the electron density map was modified based on the daily MR image. We recalculated the dose distribution on the plan, and the dosimetric parameters were obtained from the dose volume histograms of the planning target volume (PTV) and organs at risk. Results: The average dose difference in the PTV was 0.86Gy, and the observed difference at the maximum dose was up to 2.07 Gy. The variation in air pockets during treatment resulted in an under- or overdose in the PTV. Conclusions: We recommend the re-contouring of the air pockets to deliver an accurate radiation dose to the target in MRgART, even though it is a time-consuming method.

Prediction of Midline Dose from Entrance and Exit Dose Using OSLD Measurements for Total Body Irradiation

  • Choi, Chang Heon;Park, Jong Min;Park, So-Yeon;Chun, Minsoo;Han, Ji Hye;Cho, Jin Dong;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.77-82
    • /
    • 2017
  • Background: This study aims to predict the midline dose based on the entrance and exit doses from optically stimulated luminescence detector (OSLD) measurements for total body irradiation (TBI). Materials and Methods: For TBI treatment, beam data sets were measured for 6 MV and 15 MV beams. To evaluate the tissue lateral effect of various thicknesses, the midline dose and peak dose were measured using a solid water phantom (SWP) and ion chamber. The entrance and exit doses were measured using OSLDs. OSLDs were attached onto the central beam axis at the entrance and exit surfaces of the phantom. The predicted midline dose was evaluated as the sum of the entrance and exit doses by OSLD measurement. The ratio of the entrance dose to the exit dose was evaluated at various thicknesses. Results and Discussion: The ratio of the peak dose to the midline dose was 1.12 for a 30 cm thick SWP at both energies. When the patient thickness is greater than 30 cm, the 15 MV should be used to ensure dose homogeneity. The ratio of the entrance dose to the exit dose was less than 1.0 for thicknesses of less than 30 cm and 40 cm at 6 MV and 15 MV, respectively. Therefore, the predicted midline dose can be underestimated for thinner body. At 15 MV, the ratios were approximately 1.06 for a thickness of 50 cm. In cases where adult patients are treated with the 15 MV photon beam, it is possible for the predicted midline dose to be overestimated for parts of the body with a thickness of 50 cm or greater. Conclusion: The predicted midline dose and OSLD-measured midline dose depend on the phantom thickness. For in-vivo dosimetry of TBI, the measurement dose should be corrected in order to accurately predict the midline dose.

Contamination of an Alcyon Co-60 Gamma rays by Electrons (Alcyon Co-60 감마선의 전자오염)

  • Yoo Meong-Jin;Kim Dong-Won;Kim Chul-Soo;Chung Woon-Hyuk
    • Radiation Oncology Journal
    • /
    • v.6 no.1
    • /
    • pp.109-116
    • /
    • 1988
  • The Alcyon Co-60 gamma rays was studied for electron contamination. The surface dose, attributable almost entirely to contamination electrons, has a linear dependence on field width for square fields and an inverse square dependence on distance from the bottom of the fixed head assembly Build-up and surface dose measurements were taken with and without an acrylic blocking tray in place. Further measurements were made with a copper filter designed to reduce secondary electrons emitted by photon interactions with the acrylic tray. The results are discussed in relation to skin sparing effect for radiation therapy Patients. And to achieve the maximum skin sparing effect, the selection of the optimum SSD and TSD is needed.

  • PDF

VLC Wireless Data Transmission of High Luminance LED Irradiated by the High Dose-Rate Gamma-Ray (고 선량 감마선 조사에 따른 고휘도 LED의 가시광 무선 데이터 전송)

  • Cho, Jai-Wan;Choi, Young-Soo;Hong, Seok-Boong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.996-1000
    • /
    • 2010
  • In order to apply VLC (visible light communication) in harsh environment of nuclear power plant in-containment building, the high luminance LEDs, which are key components of the VLC system, have been gamma irradiated at the dose rate of 4 kGy/h during 72 hours up to a total dose of 288 kGy. The radiation induced coloration effect in the high luminance LED bulb made of acryl or plastic material was observed. In the VLC wireless data transmission experiment using the high luminance LEDs irradiated by high dose rate gamma-ray, the radiation induced coloration effect of the high luminance LED bulb extended the communication distance compared to non-irradiated LEDs.