• Title/Summary/Keyword: Radiation device

Search Result 769, Processing Time 0.024 seconds

Application of Carbon Materials for the Development of Medical Devices (의료기기의 발전을 위한 탄소소재의 활용)

  • Yeong-Gon Kwak
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.1
    • /
    • pp.23-28
    • /
    • 2023
  • Carbon materials are widely used in many areas of our lives. A fiber having a carbon content of 90% or more obtained by heating an organic fiber precursor is referred to as a "carbon fiber". Carbon fibers are currently used in the medical market to manufacture radiation transmission device parts, artificial joints, and medical aids, as many developments have been made to utilize carbon fibers' characteristics such as light weight, radiation permeability, biocompatibility, high strength, high heat resistance, thermal conductivity, and electrical conductivity. In order to maintain body temperature and increase immunity in long-lasting nuclear medical examination and treatment through the idea of convergence of carbon materials and radiation technology, the quality of medical services can be improved by utilizing carbon materials. We should be aware of the domestic carbon-based medical device industry and make efforts to contribute to the development of medical devices. As a radiation expert, we should try to use our skills and experience to find items that can be fused with medical devices to develop various nuclear medical examination fields and radiographic examination fields that can be widely applied. We should actively engage in future technology development and carbon material research to strengthen the global competitiveness of the domestic medical device industry and improve the quality of medical services.

  • PDF

Development of Respiratory Motion Reduction Device System (RMRDs) for Radiotherapy in Moving Tumor: Construction of RMRDs and Patient Setup Verification Program

  • Lee, Suk;Chu, Sung-Sil;Lee, Sei-Byung;Jino Bak;Cho, Kwang-Hwan;Kwon, Soo-Il;Jinsil Seong;Lee, Chang-Geol;Suh, Chang-Ok
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.86-89
    • /
    • 2002
  • The purpose is to develop a system to reduce the organ movement from the respiration during the 3DCRT or IMRT. This research reports the experience of utilizing personally developed system for mobile tumors. The patients clinical database was structured for 10 mobile tumors and patient setup error measurement and immobilization device effects were investigated. The RMRD system is composed of the respiratory motion reduction device utilized in prone position and abdominal strip device(ASD) utilized in the supine position, and the analysis program, which enables the analysis on patients setup reproducibility. Dose to normal tissue between patients with RMRDs and without RMRDs was analyzed by comparing the normal tissue volume, field margins and dose volume histogram(DVH) using fluoroscopy and CT images. And, reproducibility of patients setup verify by utilization of digital images. When patients breathed freely, average movement of diaphragm was 1.2 cm in prone position in contrast to 1.6 cm in supine position. In prone position, difference in diaphragm movement with and without RMRDs was 0.5 cm and 1.2 cm, respectively, showing that PTV margins could be reduced to as much as 0.7 cm. With RMRDs, volume of the irradiated normal tissue (lung, liver) reduced up to 20 % in DVH analysis. Also by obtaining the digital image, reproducibility of patients setup verify by visualization using the real-time image acquisition, leading to practical utilization of our software. Internal organ motion due to breathing can be reduced using RMRDs, which is simple and easy to use in clinical setting. It can reduce the organ motion-related PTV margin, thereby decrease volume of the irradiated normal tissue.

  • PDF

Abdomen Immobilization with Air Injected Balloon Blanket

  • Suh, Ye-Lin;Yi, Byong-Yong;Ahn, Seung-Do;Lee, Sang-Wook;Kim, Jong-Hoon;Shin, Seung-Ai;Park, Eun-Kyung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.100-102
    • /
    • 2002
  • The demand for a better immobilization device has been increased in the radiation oncology field. Especially, it is essential to have a reliable and practical immobilization tool for the whole body radiosurgery and the IMRT (intensity modulated radiation therapy). A useful method to immobilize the abdomen for the external beam radiation treatment is developed. The air-injected balloon blanket (AIBB) was designed as an immobilization device. As the air was injected into it, it pressed down the patient's abdomen and fixed the patient. The AIBB played a role not only to grab the patients' motion, but also to increase the patients' setup reproducibility. Patients' movements due to the respiration were reduced and the reconstruction could be maximized. The experimental results revealed that the AIBB could be used for the clinic.

  • PDF

Evaluating the Efficiency of the Device in Shielding Scattered Radiation during Treatment of Carcinoma of the Penis (음경암의 방사선치료 시 자체 제작한 Device의 산란선 차폐 효과에 대한 유용성 평가)

  • Gim, Yang-Soo;Lee, Sun-Young;Lim, Suk-Gun;Gwak, Geun-Tak;Pak, Ju-Gyeong;Lee, Seung-Hoon;Hwang, Ho-In;Cha, Seok-Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • Purpose: We evaluated the device that was created for maintaining the patient's setup and protecting the testicles from scattered radiation during treatment of carcinoma of the penis. Materials and Methods: The phantom testicles were made of vaseline cotton gauze and the device consisted of 5 mm of acryl box and 4 mm of lead shielding. $3{\times}3\;cm^2$, $4{\times}4\;cm^2$, $5{\times}5\;cm^2$, $6{\times}6\;cm^2$, $7{\times}7\;cm^2$ field sizes were used for this study and measurement was made at 4, 5, 6, 7, 8, 10 cm from the lower edge of the field for 10 times with lead shielding and without the shielding respectively. 200 cGy was delivered using 6 MV photons. Results: The scatted radiation without lead shielding at 4, 5, 6, 7, 8, 10 cm from the lower edge of the field were 14.8-4.7 cGy with $3{\times}3\;cm^2$, 15.7-5.2 cGy with $4{\times}4\;cm^2$, 17.6-5.5 cGy with $5{\times}5\;cm^2$, 19.9-6.6 cGy with $6{\times}6\;cm^2$, 22.2-7.6 cGy with $7{\times}7\;cm^2$ and the measured dose without lead shielding were 7.1-2.6 cGy with $3{\times}3\;cm^2$, 8.9-3.6 cGy with $4{\times}4\;cm^2$, 12.3-4.8 cGy with $5{\times}5\;cm^2$, 14.6-5.0 cGy with $6{\times}6\;cm^2$ and 21.1~6.4 cGy with $7{\times}7\;cm^2$. As shown above, the scatted radiation decreased after using lead shielding. Depending of the range of field sizes, the resulting difference between without shielding values and with shielding values were: 7.8-1.1 cGy at 4 cm, 5.1-1.2 cGy at 5 cm, 3.8-1.1 cGy at 6 cm, 3.4-1.7 cGy at 7 cm, 2.8-1.7 cGy at 8 cm, 2.4-2.5 cGy at 9 cm and 2.1-1.8 cGy at 10 cm. In the situation as described above, the range in values depending on the distance was 7.8-1.1 cGy with $3{\times}3\;cm^2$, 6.9-1.6 cGy with $4{\times}4\;cm^2$, 5.3-0.8 cGy with $5{\times}5\;cm^2$, 5.3-1.5 cGy with $6{\times}6\;cm^2$ and 1.1-1.8 cGy with $7{\times}7\;cm^2$. Conclusion: Using the device we created to shield the testicles from scattered radiation during treatment of carcinoma of the penis, we have found that scattered radiation to the testicles is decreased by the phantom testicles, and by increasing the distance between the testicles and penis.

  • PDF

A Study on the Natural Convection Cooling of Electronic Device Considering Conduction and Radiation (전도와 복사를 고려한 전자 장비의 자연대류 냉각에 관한 연구)

  • Lee, K.S.;Baek, C.I.;Kim, W.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.266-275
    • /
    • 1995
  • A numerical investigation on the conduction-natural convection-surface radiation conjugate heat transfer in the enclosure having substrate and chips has been performed. A 2-dimensional simulation model is developed by considering heat transfer by conduction, convection and radiation. The solutions to the equation of radiative transfer are obtained by the discrete ordinates method using S-4 quadrature. The effects of Rayleigh number and the substrate-fluid thermal conductivity ratio on the cooling of chip are analyzed. The result shows that radiation is the dominant heat transfer mode in the enclosure.

  • PDF