• Title/Summary/Keyword: Radiation detector readout system

Search Result 6, Processing Time 0.02 seconds

ROIC Design of HgCdTe FPA for MWIR detection and Implementation of Thermal Image (중적외선 감지용 초점면 배열 HgCdTe의 신호 취득 회로 설계 및 열영상 구현)

  • Kim, Byeong-Hyeok;Lee, Hui-Cheol;Kim, Chung-Gi
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.3
    • /
    • pp.63-71
    • /
    • 2000
  • Infrared (IR) detector chip, which detects the IR radiation from all of the objects and converts to image signal, is usually fabricated using hybrid bonding technology with detector away and readout integrated circuit (ROIC). In this study, we designed the readout circuit and simulated its operations. Fabricating readout circuit chips, we measured operation results satisfying its design requirements in 6V supply voltage. After we mount the IR detector chip in the manufactured thermal image system, thermal images were implemented. The obtained thermal images for high and room temperature target objects are sufficiently recognizable. Using the low noise thermal Image system, we expect to obtain thermal images with higher temperature resolution.

  • PDF

Radiation-hardened-by-design preamplifier with binary weighted current source for radiation detector

  • Minuk Seung;Jong-Gyun Choi ;Woo-young Choi;Inyong Kwon
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.189-194
    • /
    • 2024
  • This paper presents a radiation-hardened-by-design preamplifier that utilizes a self-compensation technique with a charge-sensitive amplifier (CSA) and replica for total ionizing dose (TID) effects. The CSA consists of an operational amplifier (OPAMP) with a 6-bit binary weighted current source (BWCS) and feedback network. The replica circuit is utilized to compensate for the TID effects of the CSA. Two comparators can detect the operating point of the replica OPAMP and generate appropriate signals to control the switches of the BWCS. The proposed preamplifier was fabricated using a general-purpose complementary metal-oxide-silicon field effect transistor 0.18 ㎛ process and verified through a test up to 230 kGy (SiO2) at a rate of 10.46 kGy (SiO2)/h. The code of the BWCS control circuit varied with the total radiation dose. During the verification test, the initial value of the digital code was 39, and a final value of 30 was observed. Furthermore, the preamplifier output exhibited a maximum variation error of 2.39%, while the maximum rise-time error was 1.96%. A minimum signal-to-noise ratio of 49.64 dB was measured.

DEVELOPMENT AND EVALUATION OF THE MUON TRIGGER DETECTOR USING A RESISTIVE PLATE CHAMBER

  • Park, Byeong-Hyeon;Kim, Yong-Kyun;Kang, Jeong-Soo;Kim, Young-Jin;Choi, Ihn-Jea;Kim, Chong;Hong, Byung-Sik
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.1
    • /
    • pp.35-43
    • /
    • 2011
  • The PHENIX Experiment is the largest of the four experiments that have taken data at the Relativistic Heavy Ion Collider. PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma. Among many particles, muons coming from W-boson decay gives us key information to analyze the spin of proton. Resistive plate chambers are proposed as a suitable solution as a muon trigger because of their fast response and good time resolution, flexibility in signal readout, robustness and the relatively low cost of production. The RPC detectors for upgrade were assembled and their performances were evaluated. The procedure to make the detectors better was optimized and described in detail in this thesis. The code based on ROOT was written and by using this the performance of the detectors made was evaluated, and all of the modules for north muon arm met the criteria and installation at PHENIX completed in November 2009. As RPC detectors that we made showed fast response, capacity of covering wide area with a resonable price and good spatial resolution, this will give the opportunity for applications, such as diagnosis and customs inspection system.

Study of Noise Reducion in X-ray image (X-선 영상에서의 노이즈 제거에 대한 연구)

  • Park, Jong-Duk;Jeon, Sung-Chae;Huh, Young;Jin, Seong-Oh
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.391-392
    • /
    • 2006
  • In x-ray imaging system, twokinds of noises are involved. First, the charge generated from the radiation interaction with the detector during exposure is modeled by Poisson process. Second, the signal is then added by readout electronics noise, which is modeled by Gaussian distribution. In this paper, we applied Wiener filter and Wavelet to remove noise from medical X-ray image, the result shows that wavelet yield better segmentation results than the wiener filter.

  • PDF

Noise Reduction of medical X-ray Image using Wavelet Threshold in Cone-beam CT (Cone-beam CT에서 웨이브렛 역치값을 이용한 x-ray 영상에서의 노이즈 제거)

  • Park, Jong-Duk;Huh, Young;Jin, Seung-Oh;Jeon, Sung-Chae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.42-48
    • /
    • 2007
  • In x-ray imaging system, two kinds of noises are involved. First, the charge generated from the radiation interaction with the detector during exposure. Second, the signal is then added by readout electronics noise. But, x-ray images are not modeled by Gaussian noise but as the realization of a Poisson process. In this paper, we apply a new approach to remove Poisson noise from medical X-ray image in the wavelet domain, the applied methods shows more excellent results in cone-beam CT.

Ghosting Artifacts in Digital Radiography (디지털 방사선영상에서 고스팅 아티팩트)

  • Jung, Wonhee;Chon, Kwonsu
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.7
    • /
    • pp.377-382
    • /
    • 2014
  • Because of using computer system in the field of medical radiology, many artifacts which can not be seen in film/screen system are being created, especially ghosting artifacts. This artifacts could be yielded by taking advantage of a flat panel Thin-Film Transistor array detector. Ghosting artifacts can be rarely seen in clinical practice when an image that has a high-contrast object within a region of high exposure is quickly followed by another image that puts the high-contrast ghosting image in an area of lower radiation exposure. In this experiment, the ghosting artifacts were minimized for approximately 3 minutes with the unaided eye and almost disappeared for 6 minutes quantitatively between exposures. Moreover, the artifacts were influenced by more tube voltage than current and those depended not upon the number of readout cycles, but upon time.