• Title/Summary/Keyword: Radiation Units

Search Result 198, Processing Time 0.022 seconds

Environment Simulation and Effect Estimation of Space Radiation for COMS Communication Payload (통신해양기상위성 통신 탑재체의 우주 방사선 환경 모사 및 영향 추정)

  • Kim, Seong-Jun;U, Hyeong-Je;Seon, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.76-83
    • /
    • 2006
  • Space radiation environment for COMS is simulated by NASA AP8/AE8, JPL91 and NRL CREME models, respectively for trapped particle, solar proton and cosmic-ray. The radiation effects on electronic devices in communication payload are also estimated by using simulation results. Dose-depth curve and LET spectrum are calculated for estimating total ionizing dose(TID) effect and single event effect(SEE) respectively. Spherical sector method is applied to dose estimation at each position in the units of communication payload to consider shielding effect of platform and housing. Total ionizing dose at each position varies by 8 times through shielding effect under the same external space radiation environment.

Dosimetric Comparison of 6 MV Flattening Filter Free and 6 MV Stereotactic Radiosurgery Beam Using 4 mm Conical Collimator for Trigeminal Neuralgia Radiosurgery

  • Mhatre, Vaibhav R;Chadha, Pranav;Kumar, Abhaya P;Talapatra, Kaustav
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.107-113
    • /
    • 2018
  • Background: The purpose of our study was to compare the dosimetric advantages of Flattening filter free (FFF) beams for trigeminal neuralgia patients using 4 mm conical collimators over previously treated patients with 6 MV SRS beam. Materials and Methods: A retrospective study was conducted for 5 TN patients who had been previously treated at our institution using frame-based, LINAC-based stereotactic radiosurgery (SRS) on Novalis Tx using 6 MV SRS beam were replanned on 6X FFF beams on Edge Linear accelerator with same beam angles and dose constraints using 4 mm conical collimator. The total number of monitor units along with the beam on time was compared for both Edge and Novalis Tx by redelivering the plans in QA mode of LINAC to compare the delivery efficiency. Plan quality was evaluated by homogeneity index (HI) and Paddick gradient index (GI) for each plan. We also analyzed the doses to brainstem and organ at risks (OARs). Results and Discussion: A 28% beam-on time reduction was achieved using 6X FFF when compared with 6X SRS beam of Novalis Tx. A sharp dose fall off with gradient index value of $3.4{\pm}0.27$ for 4 mm Varian conical collimator while $4.17{\pm}0.20$ with BrainLab cone. Among the 5 patients treated with a 4 mm cone, average maximum brainstem dose was 10.24 Gy for Edge using 6X FFF and 14.28 Gy for Novalis Tx using 6X SRS beam. Conclusion: The use of FFF beams improves delivery efficiency and conical collimator reduces dose to OAR's for TN radiosurgery. Further investigation is warranted with larger sample patient data.

Analysis of Electromagnetic Radiation Hazard for Electro-explosive Device Using Fiber Optic Sensor (광섬유 센서를 이용한 EED 전자파 방사 위해도 분석)

  • 김응조;윤기은;윤태훈;김재창
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.725-734
    • /
    • 1998
  • When the EED is exposed to the high power radiation, it is possible to verify systems survivability through measuring the induced current of EED. The usual method of performing a system level test is to replace the EED's with modified units from which the explosive charge has been removed and replaced with the fiber optic sensor. The thermal transient test was performed to obtain the temperature vs current characteristic curve for optical sensor installed in EED. The currents measured when the system is exposed to a known EME are compared to the proposed specfication about the EED and a decision is made on whether system is safe or not.

  • PDF

The Snaked-line Array Antenna (스네이크 라인 선열 안테나)

  • Yang, In-Eung;Lee, Sang-Seol;O, Seung-Yeop
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.10 no.5
    • /
    • pp.21-30
    • /
    • 1973
  • A snaked-line array antenna is investigated for the use of high gain antenna at X-band frequency by studing its attenation constant and the radiation pattern. Attenuation constant which is equivalent to the radiation resistance varies roughly as a function of the square of sinh$\theta$a where sin$\theta$a corresponds to the amplitude of sinusoidal form of snaked-line. The directivity is determined by the number of snaked-line antennas and the periodic units of a snaked line.

  • PDF

Quantitative and Qualitative Evaluation of Brain Diffusion Weighted Magnetic Resonance Imaging: Comparision with 1.5 T and 3.0 T Units (뇌 확산강조 자기공명영상에 대한 정량적, 성적 평가: 1.5 T와 3.0 T 기기 비교)

  • Goo, Eun-Hoe;Dong, Kyung-Rae
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.227-230
    • /
    • 2016
  • DWI of biological effects are independent of magnetic field strength in various regions. High field strength, however, does affect the signal to noise ratio (SNR) and artifacts of diffusion weighted imaging (DWI) images, which ultimately will influence the quantitative of diffusion imaging. In this study, the effects of field strength on DWI are reviewed. The effects of the diseases also are discussed. Comparing DWI in cerebellum, WM, GM, Hyperacute region measurements both as a function of field strength (1.5T and 3.0T). Overall, the SNR of the DWI roughly doubled going from 1.5 T to 3.0 T. In summary, DWI studies at 3.0 T is provided significantly improved DWI measurements relative to studies at 1.5T.

A Study on the Status of Medical Equipment and Radiological Technologists using Big Data for Health Care: Based on Data for 2020-2021 (보건의료 빅데이터를 활용한 의료장비 및 방사선사 인력 현황 연구 : 2020-2021년 자료를 기준으로)

  • Jang, Hyon-Chol
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.667-673
    • /
    • 2021
  • As we enter the era of the 4th industrial revolution, it is judged that the scope of work of radiologists will be further expanded according to the innovation and advancement of radiation medical technology development. In this study, the current status of medical equipment and radiology technicians was identified, and basic data were provided for the plan for nurturing talents in the field of radiation medical technology in the era of the 4th industrial revolution, as well as career and employment counseling. Data from the second quarter of 2020 and the second quarter of 2021 were analyzed using health and medical big data. As a result of comparing the status of medical equipment by type in 2021 compared to 2020, C-Arm X-ray examination equipment increased by 5.83% to 6,638 units, followed by MRI examination equipment 1,811 units 5.29%, and angiography equipment 725 units 5.22% , general X-ray examination equipment 21,557 units increased 3.99%, CT examination equipment 2,136 units 3.03%, and breast examination equipment 3,425 units increased 3.00%. As a result of a comparison of the total number of radiologists in 2021 compared to 2020, the number was 29,038, an increase of 2.73%. As a result of comparing the status of radiographers by region, the increase was highest in the Gyeonggi region with 5.96%, followed by the Gangwon region with a 5.66% increase and the Chungnam region with a 3.81% increase. In a situation where the number of medical equipment and radiologist manpower is increasing, universities are developing specialized knowledge and practical competency through subject development related to the understanding and utilization of customized artificial intelligence and big data that can be applied in the medical radiation technology field in the era of the 4th industrial revolution. It is necessary to nurture qualified radiographers, and at the level of the association, it is thought that active policies are needed to create new jobs and improve employment.

Flavonoids of Rosa roxburghii Tratt Act as Radioprotectors

  • Xu, Ping;Zhang, Wen-Bo;Cai, Xin-Hua;Lu, Dan-Dan;He, Xiao-Yang;Qiu, Pei-Yong;Wu, Jiao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8171-8175
    • /
    • 2014
  • Background: To study the radioprotective effects of flavonoids from Rosa roxburghii Tratt (FRT). Materials and Methods: The radioprotective effects of FRT were investigated by examining cell viability, 30-day survival of mice and the number of colony-forming units in spleen (CFU-S) after total-body 60Co irradiation. Results: The survival rates of irradiated cells gradually increased with increasing concentrations of FRT. The survival rate was the highest at 87% with a concentration of $30{\mu}g/mL$. Pretreatment with FRT was needed to realize its radioprotective activity in mice at the dose of 60 mg/kg. With the increasing doses of 30 mg/kg, 60 mg/kg and 120 mg/kg, the numbers of CFU-S increased, and were significantly different compared with the control group. Conclusions: Pretreatment with FRT prior to irradiation resulted in significantly higher cell survival at 24 h after 5 Gy radiation, increased 30-day survival in mice after exposure to a potentially lethal dose of 8 Gy, and resulted in a higher number of CFU-S in mice after exposure to a dose of 6 Gy. These results collectively indicate that FRT is an effective radioprotective agent.

Fast Neutron Beam Dosimetry (속중성자선의 선량분포에 관한 연구)

  • Lee Hyo Nam;Ji Young Hoon;Ji Kwang Soo;Lee Dong Han
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.9 no.1
    • /
    • pp.71-81
    • /
    • 1997
  • I. Objective and Importance of the Project We have been using MC-50 cyclotron and NT-50 neutron therapy machine for treating cancer patients since 1986 at Korea Cancer Center Hospital. It is mandatory to measure accurately the dose distribution and the total absorbed dose of fast neutron for putting it to the clinical use. At present the methods of measurement of fast neutron are proposed largely by American Associations of Physicists in Medicine (Task Group 18), European Clinical Neutron Dosimetry Group, and International Commission on Radiation Units and Measurements. The complexity of measurement, however, induce the methodological differences between them. In our study, therefore, we tried to establish a unique technique of measurement by means of measuring the emitted doses and the dose distribution of fast neutron beam from neutron therapy machine, and to invent a standard method of measurement adequate to our situation. II. Scope and Contents of the Project For establishing a unique technique of measurement and inventing a standard method of measurement of fast neutron beam, 1. to grasp the physical characteristics of neutron therapy machine 2. to study the principles for measrement of fast neutron beam 3. to get the dose distribution (dose rate, percent-depth dose, flatness etc) throught the actual measurement 4. to compare our data with those being cited world-widely.

  • PDF

Determination of defect depth in industrial radiography imaging using MCNP code and SuperMC software

  • Khorshidi, Abdollah;Khosrowpour, Behzad;Hosseini, S. Hamed
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1597-1601
    • /
    • 2020
  • Background: Non-destructive evaluation of defects in metals or composites specimens is a regular method in radiographic imaging. The maintenance examination of metallic structures is a relatively difficult effort that requires robust techniques for use in industrial environments. Methods: In this research, iron plate, lead marker and tungsten defect with a 0.1 cm radius in spherical shape were separately simulated by MCNP code and SuperMC software. By 192Ir radiation source, two exposures were considered to determine the depth of the actual defined defect in the software. Also by the code, displacement shift of the defect were computed derived from changing the source location along the x- or y-axis. Results: The computed defect depth was identified 0.71 cm in comparison to the actual one with accuracy of 13%. Meanwhile, the defect position was recognized by disorder and reduction in obtained gamma flux. The flux amount along the x-axis was approximately 0.5E+11 units greater than the y-axis. Conclusion: This study provides a method for detecting the depth and position of the defect in a particular sample by combining code and software simulators.

Calibration of an $^{192}Ir$ Source Used for High Dose Rate RALS. (RALS에 장착한 Ir-192 선원의 강도측정에 대한 고찰)

  • Moon, Un-Chull
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.6 no.1
    • /
    • pp.56-60
    • /
    • 1994
  • In the past, brachytherapy was carried out mostly with radium or radon sources. Currently. use of artificially produced radionuclially produced radionuclides such as $^{137}Cs,\;^{192}Ir,\;^{198}Au,\;and\;^{125}I$ is rapidly increasing. Although electrons are often used as an alternative to interstitial implants, brachytherapy continues to remain an important mode of therapy, either alone or combined with external beam. The National Council on Radiation Protection and Measurements(NCRP) recommends that the strength of any ${\gamma}$ emitter should be specified directly in terms of exposure rate in air at a specified distance such as 1m. The air kerma strength is defined as the product of air kerma rate in 'free space' and the square of the disrance of the calibration point from the source center along the perpendicular bisector, i. e., $S_k=K_L{\times}L^2$. Where $S_K$ is the the air kerma strength and K is the air kerma rate at a specified distance L. (usually 1m). Recommended units for all kerma strength are ${\mu}Gym^{2}h^{-1}$.

  • PDF