• Title/Summary/Keyword: Radiation Treatment

Search Result 3,759, Processing Time 0.061 seconds

Quality Assurance in Intensity Modulated Radiation Theray (세기조절방사선치료의 정도관리)

  • Kim, Sung-Kyu
    • Journal of Yeungnam Medical Science
    • /
    • v.25 no.2
    • /
    • pp.85-91
    • /
    • 2008
  • Intensity-modulated radiation therapy (IMRT) is believed to be one of the best radiation treatment techniques. IMRT is able to deliver fatal doses of radiation to the tumor region with minimal exposure of critical organs. It is essential to have a comprehensive quality assurance program to assure precision and accuracy in treatment, due to the character of IMRT. We applied quality assurance technique to the Eclipse treatment planning system and sought to determine its effectiveness in patient treatment planning. An acrylic phantom, film, and an ionization chamber were used in this study.

  • PDF

A Study for Advanced Radiation Therapy (발전된 방사선 치료에 관한 고찰)

  • Jang, Eun-Sung;Beak, Seong-Min;Ko, Seung-Jin;Kang, Se-Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.2
    • /
    • pp.115-122
    • /
    • 2008
  • Purpose: The cancer treatment which uses radiation from next year when the X-ray is discovered with the fact that it is started. The radiation treatment technique for a cancer treatment is developed ceaselessly without and it is come and, with advancement of the computer and electromagnetic engineering it joins in and quickly, it was made to do a many development from radiation treatment field. Accordingly, this study is examine in the radiotherapy technique which is developed that importance to therapeutic principles and methods. Materials and Methods: We had investigated record for radiotherapy technique which is developed and we had acquired information widely at clinical experience data. Results: The cancer treatment which uses the radiation of today is repeating a dazzling development. Past the treatment which is two-dimensional it does not correspond in therapeutic objective but currently 3 dimension three-dimensional moulding treatment or centurial control radiation treatment this the fourth dimension therapeutic technique which is in parallel to be introduced the complication solution in compliance with a normal organization protection and the radiation which are a difficult problem of during that time radiation treatment possibly did. Conclusion: 3-dimensional and 4-dimensional modern radiation treatment which is developen is that corresponding in objective of radiation treatment and the evaluation that again it does thick, judges in about the cancer treatment which uses radiation with the fact that the protection of normal organization is almost become accomplished.

  • PDF

Analysis of Treatment and Delay Times by Disease Site and Delivery Technique at Samsung Medical Center - Proton Therapy Center

  • Jo, Kwanghyun;Ahn, Sung Hwan;Chung, Kwangzoo;Cho, Sungkoo;Shin, Eunhyuk;Hong, Chae-Seon;Park, Seyjoon;Kim, Dae-Hyun;Lee, Boram;Lee, Woo-Jin;Seo, Se-Kwang;Jang, Jun-Young;Choi, Doo Ho;Lim, Do Hoon;Han, Youngyih
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.258-266
    • /
    • 2016
  • We have treated various disease sites using wobbling and scanning proton therapy techniques since December 2015 at the Samsung Medical Center. In this study, we analyze the treatment time for each disease site in 65 wobbling and 50 scanning patient treatments. Treatment times are longest for liver and lung patients using the respiratory gating technique in the wobbling treatment and for cranio-spinal irradiation in pediatric patients with anesthesia in the scanning treatment. Moreover, we analyze the number of incidents causing treatment delays and the corresponding treatment delay time. The X-ray panel was the main reason for delays in the wobbling treatment; this decreased continually from January to June 2016, related closely to the proficiency of the human operators involved. The main reason for delays in the scanning treatment was interlocks during scanning pattern delivery; this was resolved by proton machine engineers. Through this work, we hope to provide other institutes with useful insight for initial operation of their proton therapy machines.

Minimization of Treatment Time Using Partial-Arc Volumetric Modulated Arc Therapy with Bladder Filling Protocol for Prostate Cancer

  • Hojeong Lee;Dong Woon Kim;Ji Hyeon Joo;Yongkan Ki;Wontaek Kim;Dahl Park;Jiho Nam;Dong Hyeon Kim;Hosang Jeon
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.101-107
    • /
    • 2022
  • Purpose: Radiotherapy after bladder filling protocol (BFP) is known to enhance treatment quality and reduce side effects in prostate cancer, a common male solid cancer globally. However, due to the need to hold back urine during treatment, patients frequently complain of discomfort, and treatment is frequently suspended when patients urinate during treatment and urine penetrates the treatment device, causing malfunction. Therefore, the effect of minimizing treatment time when partial-arc volumetric modulated arc therapy (VMAT) was used instead of full-arc was assessed in this study. Methods: A total of 70 plans were created in 10 patients using 7 different arc sizes, and the treatment time for each plan was calculated. Results: Reduced arc size by half resulted in a 54.4% decrease in mean treatment duration, with a proportional tendency observed. Furthermore, the effect of VMAT arc size reduction on target dose homogeneity was significantly limited, and the effect on surrounding organs at risk (OAR) was negligible. It should be noted, however, that when the arc size decreases by >40%, the dose increases in the area without OAR around the target. Conclusions: The results of this study demonstrated that partial-arc VMAT for enhancing treatment convenience and efficacy of prostate cancer patients undergoing BFP can achieve a considerable reduction in treatment time while preserving treatment quality, and it is expected to be useful for partial-arc VMAT plan design and implementation in practice.

Quality Assurance for Radiation Oncology (치료방사선과 영역의 적정관리)

  • Kim, Gwi-Eon
    • Quality Improvement in Health Care
    • /
    • v.2 no.1
    • /
    • pp.110-117
    • /
    • 1995
  • The Comprehensive quality assurance for radiation oncology provides an overall organizational structures, responsibilities, procedures, processes and resources for assuring the quality of patient management by radiation treatment. Superior performance of modern radiotherapy equipment will be essential part of quality assurance in radiation oncology, which high degree of accuracy and consistency should be maintained under the optimal quality assurance program. Besides quality control of all radiation equipment, this review also emphasizes quality assurance of clinical aspect such as adequacy of the medical decision-making which eventually leads to the treatment prescription, accuracy of treatment procedure from treatment preparation to radiation delivery, and the significance of assessment of treatment outcomes with structure and process.

  • PDF

Assessment of External Radiation Dose for Workers in Domestic Water Treatment Facility According to the Working Type (국내 수처리시설 종사자 작업유형에 따른 외부피폭방사선량 평가)

  • Seong Hun Jeon;Seong Yeon Lee;Hyeok Jae Kim;Min Seong Kim;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.2
    • /
    • pp.151-160
    • /
    • 2023
  • The International Atomic Energy Agency (IAEA) proposes 11 industries that handle Naturally Occurring Radioactive Material (NORM) that are considered to need management. A water treatment facility is one of the above industries that takes in groundwater and produces drinking water through a water treatment process. Groundwater can accumulate natural radionuclides such as uranium and thorium in raw water by contacting rocks or soil containing natural radionuclides. Therefore, there is a possibility that workers in water treatment facilities will be exposed due to the accumulation of natural radionuclides in the water treatment process. The goal of this study is to evaluate the external radiation dose according to the working type of workers in water treatment facilities. In order to achieve the above goal, the study was conducted by dividing it into 1) analysis of the exposure environment, 2) measurement of the external radiation dose rate 3) evaluation of the external radiation dose. In the stage of analyzing the exposure environment, major processes that are expected to occur significantly were derived. In the measurement stage of the external radiation dose rate, a map of the external radiation dose rate was prepared by measuring the spatial radiation dose rate in major processes. Through this, detailed measurement points were selected considering the movement of workers. In the external radiation dose evaluation stage, the external radiation dose was evaluated based on the previously derived external radiation dose rate and working time. As a result of measuring the external radiation dose rate at the detailed points of water treatment facilities A to C, it was 1.90×10-1 to 3.75×100 μSv h-1, and the external radiation dose was analyzed as 3.27×10-3 to 9.85×10-2 mSv y-1. The maximum external radiation dose appeared during the disinfection and cleaning of activated carbon at facility B, and it is judged that natural radionuclides were concentrated in activated carbon. It was found that the external radiation dose of workers in the water treatment facility was less than 1mSv y-1, which is about 10% of the dose limit for the public. As a result of this study, it was found that the radiological effect of external radiation dose of domestic water treatment facility workers was insignificant. The results are expected to contribute as background data to present optimized safety management measures for domestic NORM industries in the future.

Radiation Therapy against Pediatric Malignant Central Nervous System Tumors : Embryonal Tumors and Proton Beam Therapy

  • Lim, Do Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.3
    • /
    • pp.386-392
    • /
    • 2018
  • Radiation therapy is highly effective for the management of pediatric malignant central nervous system (CNS) tumors including embryonal tumors. With the increment of long-term survivors from malignant CNS tumors, the radiation-related toxicities have become a major concern and we need to improve the treatment strategies to reduce the late complications without compromising the treatment outcomes. One of such strategies is to reduce the radiation dose to craniospinal axis or radiation volume and to avoid or defer radiation therapy until after the age of three. Another strategy is using particle beam therapy such as proton beams instead of photon beams. Proton beams have distinct physiologic advantages over photon beams and greater precision in radiation delivery to the tumor while preserving the surrounding healthy tissues. In this review, I provide the treatment principles of pediatric CNS embryonal tumors and the strategic improvements of radiation therapy to reduce treatment-related late toxicities, and finally introduce the increasing availability of proton beam therapy for pediatric CNS embryonal tumors compared with photon beam therapy.

Image Guided Radiation Therapy

  • Ui-Jung Hwang;Byong Jun Min;Meyoung Kim;Ki-Hwan Kim
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.37-52
    • /
    • 2022
  • Over the past decades, radiation therapy combined with imaging modalities that ensure optimal image guidance has revolutionized cancer treatment. The two major purposes of using imaging modalities in radiotherapy are to clearly delineate the target prior to treatment and set up the patient during radiation delivery. Image guidance secures target position prior to and during the treatment. High quality images provide an accurate definition of the treatment target and the possibility to reduce the treatment margin of the target volume, further lowering radiation toxicity and improving the quality of life of cancer patients. In this review, the various types of image guidance modalities used in radiation therapy are distinguished into ionized (kilovoltage and megavoltage image) and nonionized imaging (magnetic resonance image, ultrasound, surface imaging, and radiofrequency). The functional aspects, advantages, and limitation of imaging using these modalities are described as a subsection of each category. This review only focuses on the technological viewpoint of these modalities and any clinical aspects are omitted. Image guidance is essential, and its importance is rapidly increasing in modern radiotherapy. The most important aspect of using image guidance in clinical settings is to monitor the performance of image quality, which must be checked during the periodic quality assurance process.

The Availability of Diagnostic and Treatment Planning Computer in 700 Cancer Patients and Magnification Devices for CT (암환자 700예의 진단 및 치료 CT 이용율과 CT 확대장치)

  • Lee, Gui-Won;Park, Joo-Sun;Han, Yong-Moon;Yoon, Sei-Chul;Shinn, Kyung-Sub
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.2 no.1
    • /
    • pp.81-85
    • /
    • 1987
  • It has been evident since 1972 that computed tomography(CT) can play an important role in treatment and managment of the cancer patients as four steps; diagnosis, satging Treatment and follow-up. In this paper, we intended to investigate the availability of CT scan and treatment planning computer in 700 cancer patients who have undergone radiation therapy at the division of radiation therapy, Kangnam St. Mary's Hospital, Catholic Medical College between Mar. 1983 and Dec. 1985. The result were as follow; 1. Of 700 irradiated cancer patients, 342 patients ($48.9\%$) were performed CT scan prior to radiation therapy. 2. The distribution of lesions in 342 patients having CT scans was like this; CNS (83 of 104 patients, $79.8\%$), abdomen (44 of 76 patients, $57.9\%$), pelvis (100 of 188 patients, $53.2\%$) etc. in order. 3. The treatment planning computer were used in 280 cancer patients ($40\%$). 4. Of the 280 cancer patients using treatment planning computer, 167 patients ($59.6\%$) applied diagnostic CT scan and remaining 113 patients ($40.4\%$) were made body contour to be used for radiation therapy planning by the treatment planning computer. Authors also made some magnification devices used for small multiformat CT images to magnify into life size, consisting of overhead projector (3M) I.V. stand and mirror. These enabled us to make less errors in tracing the small-sized CT images during input of the anatomical data into the treatment planning computer.

  • PDF

Characteristics of the Contact Angle Using the Microwave Plasma Treatment on Scintillator Panel Substrates (마이크로웨이브 플라즈마 처리를 통한 섬광체 패널 기판의 접촉가 특성변화)

  • Kim, Byoungwook;Kim, Youngju;Ryu, Cheolwoo;Choi, Byoungjung;Kwon, Youngman;Lee, Youngchoon;Kim, Myungsoo;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.43-47
    • /
    • 2014
  • By measuring decrease change of the contact angle after microwave plasma treatment on the glass and Al as a scintillator panel sample substrate, the adhesive performance of scintillator panel can be expected to improve. Also resolution and sensitivity of scintillator panel after microwave plasma treatment can be expected to maintain highly.