• Title/Summary/Keyword: Radiation Thermometer

Search Result 29, Processing Time 0.024 seconds

Report of Present Status of Calibration for Domestic Radiation Measurements Instruments (국내 방사선 측정장비 보유 현황 및 교정 현황 조사)

  • Lim, Sangwook;Choi, Jinho;An, Sohyun;Cho, Kwang Hwan;Lee, Sang Hoon;Lee, Rena;Cho, Sam Ju
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.46-53
    • /
    • 2016
  • Periodical calibrations of radiation detectors are important for accurate quality assurance of therapeutic linac. The measuring instruments such as ion-chamber, thermometer, barometer, and survey meter should be calibrated periodically. Period of calibration for these instruments is suggested 6 month to one year in Korea and two years in other countries nowadays. Therefore, the determination of reasonable period for calibration is needed. In this study, we plan to utilize the results of these survey; frequent in use, how to use and stability of instruments, to determine the optimized period of calibration for the instruments in the departments of radiation oncology in Korea based on the ILAC-G24. The SurveyMonkey web-based survey tool was used and the objects of survey were 18 department of radiation oncology in university hospitals, and 15 departments were answered. The 64 questionnaires which supposed to be answered in 50 minutes were classified as the information of candidates, the thermometer, the barometer, the surveymeter, and the ion-chamber. The thermometers and the barometers were not under periodical calibration for more than half of candidates. The periods of calibration of surveymeters were 6 month to 1 year. We expect that the calibration period can be determined based on these survey results.

Estimation of Daytime Sensible Heat Flux using Routine Meteorological Data (정규기상관측자료를 이용한 주간의 현열 플럭스 추정)

  • 이종범;김용국;박철용
    • Journal of Environmental Science International
    • /
    • v.9 no.2
    • /
    • pp.109-114
    • /
    • 2000
  • The purpose of the present study is to develope the estimation scheme for sensible heat flux by semi-empirical approach using routine meteorological data such as solar radiation and air temperature. To compare observed sensible heat flux with estimated sensible heat flux, the sensible heat fluxes were measured by three dimensional sonic anemometer-thermometer. The field observation was performed during 1 year from December 1, 1995 to November 30, 1996 on a rice paddy field in Chunchon basin. The heat fluxes were measured at a heights of 5m and mean meteorological variables were obtained at two levels, 2.5m(or 1.5m) and 10m. Since condition of rice paddy field such as, wetness of the field, roughness length, vary widely, we devided annual data to 5 periods. Comparing with two sensible heat fluxes, the results showed that the correlation coefficients were more than 0.86. Thus, we can conclude that the estimation method of sensible heat fluxes using routine meteorological data is practical and reliable enough.

  • PDF

A Study on the Combustion Characteristics and Radiation Efficiency of Metal Fiber Burners (메탈 화이버 버너에서의 연소 특성 및 복사 효율에 관한 실험적 연구)

  • Park, Ju-Won;Chung, Tae-Yong;Shin, Dong-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.13-18
    • /
    • 2006
  • Radiant burners are applicable to drying, preheating and curing in materials manufacturing processes. High radiation efficiency is one of the most important performance criteria for these burners. The wide variation in reported radiation efficiencies are partly due to the differences in the measurement techniques. In the present work, water cooled radiant heat flux meter was used to measure radiant heat flux from a metal fiber mat burner. Non-contact type thermometer was also utilized to measure the surface temperature of the burner. Combustion gas was measured by gas analyzers. According to the thermal loads and stoichiometric ratios, radiant heat transfer ratio and combustion performance were discussed here in.

  • PDF

A Study on the Combustion Characteristics and Radiation Efficiency of Metal Fiber Burners (메탈 화이버 버너에서의 연소 특성 및 복사 효율에 관한 실험적 연구)

  • Park, Ju-Won;Chung, Tae-Yong;Shin, Dong-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2006
  • Radiant burners are applicable to drying, preheating and curing in materials manufacturing processes. Radiation efficiency is one of the important performance criteria for these burners. The wide variation in reported radiation efficiencies are partly due to the differences in the measurement techniques. In the present work, water cooled radiant heat flux meter was used to measure radiant heat flux from a metal fiber mat burner. Non-contact type thermometer was also utilized to measure the surface temperature of the burner. Combustion gas was measured by gas analyzers. According to the thermal loads and stoichiometric ratios, radiant heat transfer ratio and combustion performance were discussed here in.

  • PDF

An Experimental Study on the Applicability of Plate Thermometer in Steady and Unsteady-State Fire Conditions (정상 및 비정상상태의 화재조건에서 판형 열유속계의 적용성에 관한 실험적 연구)

  • Yun, Hong-Seok;Mun, Sun-Yeo;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.34-41
    • /
    • 2015
  • The applicability of plate thermometer (PT), which feature simple installation and low cost, was experimentally examined in steady and unsteady-state fire conditions. An infrared radiation heater and a square burner with C3H8 as fuel were used as heat sources. The relative measurement accuracy of the PT was evaluated by comparing measurements made using a Gardon-type heat flux meter. From a practical point of view and in terms of measurement accuracy, the optimal size and thickness of the PT in steady and unsteady-state fire conditions were 100 mm and 0.6 mm, respectively. These results can be explained by the conductive heat losses and thermal inertia of the PT for different sizes and thicknesses. It can be also concluded that measurements of heat flux using the PT in conditions of faster fire growth rate than slow require considerable attention.

The Effect of Urban Shade Trees on the WBGT(Wet Bulb Globe Thermometer Index) (도심 녹음수의 체감온도지수(WBGT) 조절효과)

  • 주민진;이춘석;류남형
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.3
    • /
    • pp.51-59
    • /
    • 2004
  • Focusing on WBGT(Wet Bulb Globe Thermometer Index) according to the LAI(Leaf Area Index) variation of trees, this study verifies the effects of urban shade trees on the outdoor thermal environment. As for methodology, air$.$globe temperature, air humidity and WBGT were measured under three shade trees whose LAIs were 2.1, 4.0 and 8.2 respectively at midday(12:00-13:00) of 14 sunny days from the 4th through the 29th day of September 2003. Those factors were also measured at the unshaded areas and compared with the values of shaded areas. The measured site was paved with interlocking concrete bricks. The measurements were analyzed through the ANCOV A(Analysis of Covariance) and the regression routines of SPSS11 for windows (SPSS Inc., 2001). The major findings were as follows. 1. The direct correlation between WBGT and LAI was very low. On the contrary, the WBGT showed close correlation with air$.$globe temperature and air humidity, and the LAI also showed very close correlation with globe temperature. These results tell that dominant shading effect by the tree is on the screening of direct solar radiation which lower the globe temperature and WBGT consequently. 2. While the average globe temperatures and WBGT at unshadowed area were 40.4$^{\circ}C$ and 26.2$^{\circ}C$ respectively, the former under the shade tree with LAI 2.1, 4.0 and 8.2 were 34.5$^{\circ}C$, 32.6$^{\circ}C$ and 30.2$^{\circ}C$, and the latter were 24.6$^{\circ}C$, 24$^{\circ}C$ and 23.4$^{\circ}C$ respectively. 3. The relationship between LAI(x) and WBGT(y) can be presented with the following equation: y = 24.23+1.53 $e^{-x}$+0.36x $e^{-x}$+0.46 $x^2$ $e^{-x}$ ($R^2$ =.98) =.98)

Modified Microwave Radio-thermometer for Measuring Temperature of Living Body (생체의 온도 측정을 위한 수정된 마이크로파 라디오-써모미터)

  • Kim Tae-Woo;Cho Tae-Kyung;Park Byoung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.2 s.302
    • /
    • pp.27-32
    • /
    • 2005
  • This paper presents a modified microwave radio-thermometer (MRTM) with material characteristic estimator and multiple temperature conversion tables to measure subcutaneous temperature of a living body This estimator provides a temperature retrieval unit with the data of material characteristics such as permittivity, conductivity, thickness and geometry of the living body. The temperature retrieval unit with multiple temperature conversion tables can select one of the tables and computes temperature value corresponding to measured radiation power. In the experiments, it was shown that the MRTM could reduce measurement errors of about $0.82^{\circ}C\;to\;7.68^{\circ}C$ for the cases of distilled water and mixed liquid at the temperature of $37^{\circ}C$.

Infrared Temperature Monitoring System based CAN for USN (USN를 위한 CAN 기반 적외선 온도감시 시스템)

  • Kim, Young-Dong;Oh, Guem-Kon;Jeong, Won-Tae;Kang, Won-Chan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.11-17
    • /
    • 2007
  • RWe have developed an infrared temperature monitoring system to measure the temperature of hot iron plate in very harsh environmental conditions as iron making equipment. We performed extensive field test for 3 months at the front side of iron plate rolling process of POSCO in Gwang-Yang. From the experimental test, we have confirmed the reliability of the developed system. We adjust the curve fit method to solve the non-linearity equations of A2TPMI sensor, and establish the under $1[^{\circ}C]$precision ratio and 25[msec] process speed each range. As experimental, we have confirmed the reliability of an infrared temperature monitoring system as POSCO test result and CAN network traffic monitoring of polling method.

Development of an Integrated Monitoring System for the Low and Intermediate Level Radioactive Waste Near-surface Disposal Facility (방사성폐기물 표층처분시설 통합 모니터링 시스템 개발)

  • Se-Ho Choi;HyunGoo Kang;MiJin Kwon;Jae-Chul Ha
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.359-367
    • /
    • 2023
  • In this study, the function and purpose of the disposal cover, which is an engineering barrier installed to isolate the disposal vault of the near-surface disposal facility for radioactive waste from natural/man-made intrusion, and the design details of the demonstration facility for performance verification were described. The Demonstration facility was designed in a partially divided form to secure the efficiency of measurement while being the same as the actual size of the surface disposal facility to be built in the Intermediate & low-level radioactive waste disposal site of the Korea Radioactive Waste Agency (KORAD). The instruments used for measurement consist of a multi-point thermometer, FDR (Frequency Domain Reflectometry) sensor, inclinometer, acoustic sensor, flow meter, and meteorological observer. It is used as input data for the monitoring system. The 3D monitoring system was composed of 5 layers using the e-government standard framework, and was developed based on 4 components: screen, control module, service module, and DBIO(DataBase Input Output) module, and connected them to system operation. The monitoring system can provide real-time information on physical changes in the demonstration facility through the collection, analysis, storage, and visualization processes.

Developing a Model for Estimating Leaf Temperature of Cnidium officinale Makino Based on Black Globe Temperature (흑구온도를 이용한 천궁 엽온 예측 모델 개발)

  • Seo, Young Jin;Nam, Hyo Hoon;Jang, Won Cheol;Lee, Bu Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.6
    • /
    • pp.447-454
    • /
    • 2018
  • Background: The leaf temperature ($T_{LEAF}$) is one of the most important physical parameters governing water and carbon flux, including evapotranspiration, photosynthesis and respiration. Cnidium officinale is one of the important folk medicines for counteracting a variety of diseases, and is particularly used as a traditional medicinal crop in the treatment of female genital inflammatory diseases. In this study, we developed a model to estimate $T_{Leaf}$ of Cnidium officinale Makino based on black globe temperature ($T_{BGT}$). Methods and Results: This study was performed from April to July 2018 in field characterized by a valley and alluvial fan topography. Databases of $T_{LEAF}$ were curated by infrared thermometry, along with meteorological instruments, including a thermometer, a pyranometer, and an anemometer. Linear regression analysis and Student's t-test were performed to evaluate the performance of the model and significance of the parameters. The correlation coefficient between observed $T_{LEAF}$ and calculated $T_{BGT}$ obtained using an equation, developed to predict $T_{LEAF}$ based on $T_{BGT}$ was very high ($r^2=0.9500$, p < 0.0001). There was a positive relationship between $T_{BGT}$ and solar radiation ($r^2=0.8556$, p < 0.0001), but a negative relationship between $T_{BGT}$ and wind speed ($r^2=0.9707$, p < 0.0001). These results imply that heat exchange in leaves seems to be mainly controlled by solar radiation and wind speed. The correlation coefficient between actual and estimated $T_{BGT}$ was 0.9710 (p < 0.0001). Conclusions: The developed model can be used to accurately estimate the $T_{Leaf}$ of Cnidium officinale Makino and has the potential to become a practical alternative to assessing cold and heat stress.