• Title/Summary/Keyword: Radiation Shielding

Search Result 613, Processing Time 0.026 seconds

On the Use Factor Analysis and Adequacy Evaluation of CyberKnife Shielding Design Using Clinical Data

  • Cho, Yu Ra;Jung, Haijo;Lee, Dong Han
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.115-122
    • /
    • 2018
  • Although the current internationally recommended standard for the use factor (U) applied to CyberKnife is 0.05 (5%), the CyberKnife shielding standard is applied more stringently. This study, based on clinical data, was aimed at examining the appropriateness of existing shielding guidelines. Sixty patients treated with G4 CyberKnife were selected. The patients were divided into two groups, according to whether they underwent skull or spine tracking. Based on the results, the use factors for each wall ranged from 0.028 (2.8%) to 0.031 (3.1%) for the intracranial treatment and 0.020 (2.0%) to 0.022 (2.2%) for the body treatment. Excessive barrier thickness resulted in inefficient use of space and higher cost to the institutions. Furthermore, because the use factor is influenced by the position of the robot, the use factor determined based on the clinical data of this study would facilitate more reasonable treatment room design.

Synthesis, physical, optical and radiation shielding properties of Barium-Bismuth Oxide Borate-A novel nanomaterial

  • B.M. Chandrika;Holaly Chandrashekara Shastry Manjunatha;K.N. Sridhar;M.R. Ambika;L. Seenappa;S. Manjunatha;R. Munirathnam;A.J. Clement Lourduraj
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1783-1790
    • /
    • 2023
  • Barium Bismuth Oxide Borate (BBOB) has been synthesized for the first time using solution combustion technique. SEM analysis reveal flower shape of the nanoparticles. The formation of the nanoparticles has been confirmed through XRD & FTIR studies which gives the physical and chemical structure of the novel material. The UV light absorption is observed in the range 200-300 nm. The present study highlights the radiation shielding ability of BBOB for different radiations like X/Gamma rays, Bremsstrauhlung and neutrons. The gamma shielding efficiency is comparable to that of lead in lower energy range and lesser than lead in the higher energy range. The bremsstrauhlung exposure constant is comparably larger for BBOB NPs than that of concrete and steel however it is lesser than that of lead. The beauty of BBOB nanoparticles lies in, high absorption of radiations and low emission of secondary radiations when compared to lead. In addition, the neutron shielding parameters like scattering length, absorption and scattering cross sections of BBOB are found to be much better than lead, steel and concrete. Thus, BBOB nanoparticles are highly efficient in absorbing X/Gamma rays, neutrons and bremsstrauhlung radiations.

Study of Radiation Safety Management of Veterinary Hospital in Korea (동물병원 방사선 안전관리체계에 대한 연구)

  • Chae, Soo-young;Choi, Ho-jung;Lee, Young-won
    • Journal of Veterinary Clinics
    • /
    • v.37 no.1
    • /
    • pp.15-22
    • /
    • 2020
  • This study investigated the effectiveness of radiation safety rules in animal hospital and the awareness and behavior of veterinary radiation workers. With the questionnaires, the data was collected from randomly selected veterinarians in animal hospitals and animal medical imaging centers. Collected data were about radiation device, shielding device, regulations, safety management, education, knowledge, behavior and awareness. Frequency, correlation and multiple regression analysis were performed. The medical devices related with radiation in animal hospital were X-ray (59%), CT (15%), fluoroscopy (12%), mobile X-ray (12%) and others (2%). The number of people using radiation shielding device is high. The answers were low on knowing radiation related regulation and receiving radiation protection education. The group with higher knowledge and awareness shows positive correlation with safety behavior. The increase of use of the radiation related medical devices in veterinary hospital causes the increase of radiation exposure risk. This study suggests that radiation safety management system and policies need to be developed to protect radiation workers and give them correct information and consciousness.

The Evaluation of Radiation Dose to Embryo/Fetus and the Design of Shielding in the Treatment of Brain Tumors (임산부의 전뇌 방사선 치료에 있어서의 태아의 방사선량 측정 및 차폐 구조의 설계)

  • Cho, Woong;Huh, Soon-Nyung;Chie, Eui-Kyu;Ha, Sung-Whan;Park, Yang-Gyun;Park, Jong-Min;Park, Suk-Won
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.4
    • /
    • pp.203-210
    • /
    • 2006
  • Purpose : To estimate the dose to the embryo/fetus of a pregnant patient with brain tumors, and to design an shielding device to keep the embryo/fetus dose under acceptable levels Materials and Methods : A shielding wall with the dimension of 1.55 m height, 0.9 m width, and 30 m thickness is fabricated with 4 trolleys under the wall. It is placed between a Patient and the treatment head of a linear accelerator to attenuate the leakage radiation effectively from the treatment head, and is placed 1 cm below the lower margin of the treatment field in order to minimize the dose to a patient from the treatment head. An anti-patient scattering neck supporters with 2 cm thick Cerrobend metal is designed to minimize the scattered radiation from the treatment fields, and it is divided into 2 section. They are installed around the patient neck by attach from right and left sides. A shielding bridge for anti-room scattered radiation is utilized to place 2 sheets of 3 mm lead plates above the abdomen to setup three detectors under the lead sheets. Humanoid phantom is irradiated with the same treatment parameters, and with and without shielding devices using TLD, and ionization chambers with and without a build-up cap. Results : The dose to the embryo/fetus without shielding was 3.20, 3.21, 1.44, 0.90 cGy at off-field distances of 30, 40, 50, and 60 cm. With shielding, the dose to embryo/fetus was reduced to 0.88, 0.60, 0.35, 0.25 cGy, and the ratio of the shielding effect varied from 70% to 80%. TLD results were 1.8, 1.2, 0.8, 1.2, and 0.8 cGy. The dose measured by the survey meter was 10.9 mR/h at the patient's surface of abdomen. The dose to the embryo/fetus was estimated to be about 1 cGy during the entire treatment. Conclusion : According to the AAPM Report No 50 regarding the dose limit of the embryo/fetus during the pregnancy, the dose to the embryo/fetus with little risk is less than 5 cGy. Our measurements satisfy the recommended values. Our shielding technique was proven to be acceptable.

Evaluation of the Shielding Effect of Lead Apron according to the Energy Spectrum Change of 99mTc (99mTc의 에너지 스펙트럼 변화에 따른 납 앞치마의 차폐 효과 평가)

  • Changyong Yoon;Youngsik Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.889-896
    • /
    • 2023
  • Changes in the energy spectrum were analyzed using 99mTc as a point source and a scattering phantom, and the shielding effect of the lead apron according to the changed gamma ray energy was evaluated. In the gamma ray energy spectrum of the scattering phantom, the photo peak area decreased and the compton scattering area increased compared to the point source. The coefficients for each energy range according to the change in the shape of the gamma ray source showed a reduction rate of up to 66.1 % at a distance of 20 cm compared to the coefficient of the point source, and in the compton scattering area, the coefficient of the scattering phantom was 122.2 % at a distance of up to 40 cm compared to the coefficient of the point source. In the difference in shielding rate according to the distance between the source and the scattering phantom using a gamma camera, the photo peak area showed similar results, but in the Compton scattering area, the shielding rate of the scattering phantom at a distance of 20 cm increased by 29.2 % compared to the shielding rate of the point source. As the distance increased, the difference in shielding rate decreased. In measuring the shielding rate of the lead apron using a radiation dosimeter, the difference in the shielding rate of the scattering phantom was up to 15.3 %, and as the distance increased, the difference in the shielding rate between the two sources decreased. The shielding rate of the lead apron of the scattering phantom is higher than that of the point source, and the effectiveness of the lead apron increases as the distance to the source increases. As a result, wearing a lead apron when directly confronting a patient who has injected radioactive pharmaceuticals is expected to be helpful in reducing radiation exposure.

A Study on the Safety of a Screening X-ray Laboratory Using Containers in accordance with the COVID 19 Outbreak (COVID 19 유행에 따른 컨테이너를 이용한 선별 X-선 검사실의 안전성에 대한 고찰)

  • Kim, Jae-Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.425-431
    • /
    • 2020
  • When a radiation generating device is installed in an export container due to COVID-19, the purpose of this study was to measure the space dose in the radiation room and to study the effectiveness of the shielding wall in the laboratory. Air dose measurement method was set behind the X-ray tube, 50 cm, 100 cm, 200 cm, and measured 12 locations. The dose values before and after the use of the movable radiation shielding wall were compared by measuring 3 locations behind the X-ray tube using the movable radiation shielding wall. The measured values were 50 cm on the left behind the X-ray tube: 1.446 μSv, behind the X-ray tube: 0.545 μSv, and 50 cm on the right behind the X-ray tube: 1.466 μSv. Measurements behind the radiation barrier were 0.190 μSv, 0.204 μSv, and 0.191 μSv. As a result of performing the corresponding sample t test of the average value according to the use of movable barrier walls, p <0.001 was found. As a result of the actual measurement, the medical exposure of the examiner due to the shielding wall in the laboratory decreased to 82.3%. In order to reduce occupational exposure in screening radiological laboratories, it is recommended that sufficient separation from radiation sources and the use of shielding walls are recommended.

The radiation shielding competence and imaging spectroscopic based studies of Iron ore region of Kozhikode district, Kerala

  • S. Arivazhagan;K.A. Naseer;K.A. Mahmoud;S.A. Bassam;P.N. Naseef Mohammed;N.K. Libeesh;A.S. Sachana;M.I. Sayyed;Mohammed S. Alqahtani;E. El Shiekh;Mayeen Uddin Khandaker
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2380-2387
    • /
    • 2023
  • Hyperspectral data and its ability to explore the minerals and their associated rocks have a remarkable application in mineral exploration and lithological characterization. The present study aims to explore the radiation shielding aspects of the iron ore in Kerala with the aid of the Hyperion hyperspectral dataset. The reflectance-spectra obtained from the laboratory conditions as well as from the image show various absorptions. The results from the spectra are validated with geochemical data and GPS points. The Monte Carlo simulation employed to evaluate the radiation shielding ability. Raising the oxygen ions caused a noteworthy decrease in the µ values of the studied rocks which is accompanied by an increase in Δ0.5 and Δeq values. The Δ0.5 and Δeq values increased by factors of approximately 77 % with raising the oxygen ions between 44.32 and 47.57 wt.%. The µ values varies with the oxygen concentrations, where the µ values decreased from 2.531 to 0.925 cm-1 (at 0.059 MeV), from 0.381to 0.215 cm-1 (at 0.662 MeV), and from 0.279 to 0.158 cm-1 (at 1.25 MeV) with raising the oxygen ions from 44.32 to 47.43 wt.%.

Rapidly and Accurately Processing of Low Melting Block for Shielding of Radiotherapy (방사선(放射線) 치료(治療)의 신속정확(迅速正確)을 위한 저온용융(低溫熔融) 차폐물(遮蔽物)의 제작(製作)과 응용(應用))

  • Chu, S.S.;Lee, D.H.;Park, C.Y.
    • Journal of Radiation Protection and Research
    • /
    • v.4 no.1
    • /
    • pp.14-20
    • /
    • 1979
  • For accurate and easily shielding irregular shaped organ, its minimized penumbra region and a low melting point alloy 'Lead Y' and synchronizing instrument have been developed. The 'Lead Y' is the quaternary eutectic alloy and it is composed of Lead 30.0% Tin 11.5% Bismuth 48 5% Cadmium 10.0% The density of its at $22^{\circ}C$ is $9.8g/cm^3$ and the melting temperature has $40^{\circ}C\;to\;68^{\circ}C$. The thickness of 'Lead Y' for perfect shielding of Co-60 gamma ray and LINAC 10MeV x-ray is 6cm and 7cm respectively. The 'Lead Y' shielding block is casted directly on the styrofoam from which is cut with hot wire of synchronizer device. The special features and advantages of the Lead Y shielding block could be summarized as follows; 1. The shielding block for radiotherapy is rapidly processed only with boiling water and styrofoam. 2. It is not injure one's health and not danger of a fire, because of not generating of any metals vapor and evil smelling. 3. It is very effective to minimize secondary penumbra for the protection of healthy tissue from unnecessary ionizing radiation regardless of the magnification source to skin distance. 4. The HVL of the Lead Y is 1.2cm for Co-60 gamma ray and it's shielding effect is almost same as the pure lead block. 5. The hardness of Lead Y is 1.5 times higher than lead block. 6. It's reavailability is higher than lead block and then one block of Lead Y is reavailable about 30 to 40 times. 7. It is usefull for shielding of x-ray, gamma ray, beta-ray, electron and neutron radiation. 8. The materials for Lead Y are easy to acquire with reasonable price and tractable.

  • PDF