DOI QR코드

DOI QR Code

The radiation shielding competence and imaging spectroscopic based studies of Iron ore region of Kozhikode district, Kerala

  • S. Arivazhagan (Centre for Applied Geology, The Gandhigram Rural Institute- Deemed to be University) ;
  • K.A. Naseer (Department of Physics, Farook College (Autonomous)) ;
  • K.A. Mahmoud (Ural Federal University) ;
  • S.A. Bassam (Department of Physics, Farook College (Autonomous)) ;
  • P.N. Naseef Mohammed (Department of Physics, Farook College (Autonomous)) ;
  • N.K. Libeesh (Centre for Applied Geology, The Gandhigram Rural Institute- Deemed to be University) ;
  • A.S. Sachana (Planetary Sciences Division, Physical Research Laboratory) ;
  • M.I. Sayyed (Department of Physics, Faculty of Science, Isra University) ;
  • Mohammed S. Alqahtani (Research Center for Advance Materials (RCAMS), King Khalid University) ;
  • E. El Shiekh (Research Center for Advance Materials (RCAMS), King Khalid University) ;
  • Mayeen Uddin Khandaker (Center for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University)
  • Received : 2023.02.02
  • Accepted : 2023.03.29
  • Published : 2023.07.25

Abstract

Hyperspectral data and its ability to explore the minerals and their associated rocks have a remarkable application in mineral exploration and lithological characterization. The present study aims to explore the radiation shielding aspects of the iron ore in Kerala with the aid of the Hyperion hyperspectral dataset. The reflectance-spectra obtained from the laboratory conditions as well as from the image show various absorptions. The results from the spectra are validated with geochemical data and GPS points. The Monte Carlo simulation employed to evaluate the radiation shielding ability. Raising the oxygen ions caused a noteworthy decrease in the µ values of the studied rocks which is accompanied by an increase in Δ0.5 and Δeq values. The Δ0.5 and Δeq values increased by factors of approximately 77 % with raising the oxygen ions between 44.32 and 47.57 wt.%. The µ values varies with the oxygen concentrations, where the µ values decreased from 2.531 to 0.925 cm-1 (at 0.059 MeV), from 0.381to 0.215 cm-1 (at 0.662 MeV), and from 0.279 to 0.158 cm-1 (at 1.25 MeV) with raising the oxygen ions from 44.32 to 47.43 wt.%.

Keywords

Acknowledgement

This work was supported by the King Khalid University through a grant RCAMS/KKU/03-22 under the Research Center for Advance Materials (RCAMS) at King Khalid University, Saudi Arabia.

References

  1. S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete, Radiat. Phys. Chem. 144 (2018) 356-360, https://doi.org/10.1016/j.radphyschem.2017.09.022.
  2. F.I. El-Agawany, N. Ekinci, K.A. Mahmoud, S. Saritas, , B. Aygun, E.M. Ahmed, Y.S. Rammah, Gamma-ray shielding capacity of different B4C-, Re-, and Ni-based superalloys, Eur. Phys. J. Plus. 136 (2021) 527, https://doi.org/10.1140/epjp/s13360-021-01498-6.
  3. C. Aksoy, The X-Ray fluorescence parameters and radiation shielding efficiency of silver doped superconducting alloys, Radiat. Phys. Chem. 186 (2021), 109543, https://doi.org/10.1016/j.radphyschem.2021.109543.
  4. G. ALMisned, G. Kilic, E. Ilik, S.A.M. Issa, H.M.H. Zakaly, A. Badawi, U.G. Issever, H.O. Tekin, A. Ene, Structural characterization and gamma-ray attenuation properties of rice-like α-TeO2 crystalline microstructures (CMS) grown rapidly on free surface of tellurite-based glasses, J. Mater. Res. Technol. 16 (2022) 1179-1189, https://doi.org/10.1016/j.jmrt.2021.12.059.
  5. G. ALMisned, H.O. Tekin, H.M.H. Zakaly, S.A.M. Issa, G. Kilic, H.A. Saudi, M. Algethami, A. Ene, Fast neutron and gamma-ray attenuation properties of some HMO tellurite-tungstate-antimonate glasses: impact of Sm3+ ions, Appl. Sci. 11 (2021), 10168, https://doi.org/10.3390/app112110168.
  6. H.M. Zakaly, A. Ashry, A. El-Taher, A.G.E. Abbady, E.A. Allam, R.M. El-Sharkawy, M.E. Mahmoud, Role of novel ternary nanocomposites polypropylene in nuclear radiation attenuation properties: in-depth simulation study, Radiat. Phys. Chem. 188 (2021), 109667, https://doi.org/10.1016/j.radphyschem.2021.109667.
  7. F. Akman, H. Ogul, I. Ozkan, M.R. Kacal, O. Agar, H. Polat, K. Dilsiz, Study on gamma radiation attenuation and non-ionizing shielding effectiveness of niobium-reinforced novel polymer composite, Nucl. Eng. Technol. (2021), https://doi.org/10.1016/j.net.2021.07.006.
  8. G. Kilic, E. Ilik, S.A.M. Issa, B. Issa, U.G. Issever, H.M.H. Zakaly, H.O. Tekin, Fabrication, structural, optical, physical and radiation shielding characterization of indium (III) oxide reinforced 85TeO2-(15-x)ZnO-xIn2O3 glass system, Ceram. Int. 47 (2021) 27305-27315, https://doi.org/10.1016/j.ceramint.2021.06.152.
  9. H.O. Tekin, G. Bilal, H.M.H. Zakaly, G. Kilic, S.A.M. Issa, E.M. Ahmed, Y.S. Rammah, A. Ene, Newly developed vanadium-based glasses and their potential for nuclear radiation shielding aims: a Monte Carlo study on gamma ray attenuation parameters, Materials (Basel) 14 (2021) 3897, https://doi.org/10.3390/ma14143897.
  10. M.T. Teli, L.M. Chaudhari, S.S. Malode, Attenuation coefficients of 123 keV γ-radiation by dilute solutions of sodium chloride, Appl. Radiat. Isot. 45 (1994) 987-990, https://doi.org/10.1016/0969-8043(94)90166-X.
  11. B. Aygun, B. Alaylar, K. Turhan, E. Sakar, M. Karadayi, M.I.A. Al-Sayyed, E. Pelit, M. Gulluce, A. Karabulut, Z. Turgut, B. Alim, Investigation of neutron and gamma radiation protective characteristics of synthesized quinoline derivatives, Int. J. Radiat. Biol. 96 (2020) 1423-1434, https://doi.org/10.1080/09553002.2020.1811421.
  12. N.K. Libeesh, K.A. Naseer, S. Arivazhagan, A.F. Abd El-Rehim, K.A. Mahmoud, M.I. Sayyed, M.U. Khandaker, Advanced nuclear radiation shielding studies of some mafic and ultramafic complexes with lithological mapping, Radiat. Phys. Chem. 189 (2021), 109777, https://doi.org/10.1016/j.radphyschem.2021.109777.
  13. O. Agar, H.O. Tekin, M.I. Sayyed, M.E. Korkmaz, O. Culfa, C. Ertugay, Experimental investigation of photon attenuation behaviors for concretes including natural perlite mineral, Results Phys. 12 (2019) 237-243, https://doi.org/10.1016/j.rinp.2018.11.053.
  14. Q. Chen, K.A. Naseer, K. Marimuthu, P.S. Kumar, B. Miao, K.A. Mahmoud, M.I. Sayyed, Influence of modifier oxide on the structural and radiation shielding features of Sm3+-doped calcium telluro-fluoroborate glass systems, J. Aust. Ceram. Soc. 57 (2021) 275-286, https://doi.org/10.1007/s41779-020-00531-8.
  15. G. Sathiyapriya, K.A. Naseer, K. Marimuthu, E. Kavaz, A. Alalawi, M.S. AlBuriahi, Structural, optical and nuclear radiation shielding properties of strontium barium borate glasses doped with dysprosium and niobium, J. Mater. Sci. Mater. Electron. 32 (2021) 8570-8592, https://doi.org/10.1007/s10854-021-05499-0.
  16. P. Evangelin Teresa, K.A. Naseer, K. Marimuthu, H. Alavian, M.I. Sayyed, Influence of modifiers on the physical, structural, elastic and radiation shielding competence of Dy3+ ions doped Alkali boro-tellurite glasses, Radiat. Phys. Chem. 189 (2021), 109741, https://doi.org/10.1016/j.radphyschem.2021.109741.
  17. R. Divina, K.A. Naseer, K. Marimuthu, Y.S.M. Alajerami, M.S. Al-Buriahi, Effect of different modifier oxides on the synthesis, structural, optical, and gamma/beta shielding properties of bismuth lead borate glasses doped with europium, J. Mater. Sci. Mater. Electron. 31 (2020) 21486-21501, https://doi.org/10.1007/s10854-020-04662-3.
  18. E.E. Saleh, T.M. Mohammed, M.T. Hussien, Investigation of radiological parameters and their relationship with rock type from Hifan area, Yemen, J. Geochemical Explor. 214 (2020), 106538, https://doi.org/10.1016/j.gexplo.2020.106538.
  19. R.P. Gupta, Remote Sensing Geology, Springer Berlin Heidelberg, Berlin, Heidelberg, Heidelberg, 2003, https://doi.org/10.1007/978-3-662-05283-9.
  20. F.D. Van der Meer, H.M.A. Van der Werff, F.J.A. Van Ruitenbeek, C.A. Hecker, W.H. Bakker, M.F. Noomen, M. Van der Meijde, E.J.M. Carranza, J.B. de Smeth, T. Woldai, Multi- and hyperspectral geologic remote sensing: a review, Int. J. Appl. Earth Obs. Geoinf. 14 (2012) 112-128, https://doi.org/10.1016/j.jag.2011.08.002.
  21. J.S. Pearlman, P.S. Barry, C.C. Segal, J. Shepanski, D. Beiso, S.L. Carman, Hyperion, a space-based imaging spectrometer, IEEE Trans. Geosci. Remote Sens. 41 (2003) 1160-1173, https://doi.org/10.1109/TGRS.2003.815018.
  22. H. Saibi, M. Bersi, M.B. Mia, N.M. Saadi, K.M.S. Al Bloushi, R.W. Avakian, Applications of remote sensing in geoscience, Recent Adv. Appl. Remote Sens. (2018), https://doi.org/10.5772/intechopen.75995.
  23. P.T.R. Chacko, Structure and Origin of the Iron Ore Occurrences Around Calicut Kerala State India, University of Kerala, 1977.
  24. N.K. Libeesh, K.A. Naseer, S. Arivazhagan, A.F.A. El-Rehim, G. ALMisned, H.O. Tekin, Characterization of Ultramafic-Alkaline-Carbonatite complex for radiation shielding competencies: an experimental and Monte Carlo study with lithological mapping, Ore Geol. Rev. 142 (2022), 104735, https://doi.org/10.1016/j.oregeorev.2022.104735.
  25. N.K. Libeesh, K.A. Naseer, S. Arivazhagan, K.A. Mahmoud, M.I. Sayyed, M.S. Alqahtani, E.S. Yousef, Multispectral remote sensing for determination the Ultra-mafic complexes distribution and their applications in reducing the equivalent dose from the radioactive wastes, Eur. Phys. J. Plus. 137 (2022) 267, https://doi.org/10.1140/epjp/s13360-022-02473-5.
  26. S. Arivazhagan, S. Anbazhagan, ASTER data analyses for lithological discrimination of sittampundi anorthositic complex, southern India, Geosci. Res. 2 (2017), https://doi.org/10.22606/gr.2017.23005.
  27. F. Janekovi, T. Novak, PCA e a powerful method for analyze ecological niches, Princ. Compon. Anal. - Multidiscip. Appl. (2012), https://doi.org/10.5772/38538.
  28. A. Sengupta, M. Das Adhikari, S. Maiti, S.K. Maiti, P. Mahanta, S. Bhaumick, Identification and mapping of high-potential iron ore alteration zone across Joda, Odisha using ASTER and EO-1 hyperion data, J. Spat. Sci. 64 (2019) 491-514, https://doi.org/10.1080/14498596.2018.1485120.
  29. R. Manuel, M. da G. Brito, M. Chichorro, C. Rosa, Remote sensing for mineral exploration in central Portugal, Minerals 7 (2017) 1-30, https://doi.org/10.3390/min7100184.
  30. A.F.H. Goetz, Imaging spectrometry for Earth remote sensing, Imaging Spectrosc. 228 (1992) 1-19.
  31. M. Sgavetti, L. Pompilio, S. Meli, Reflectance spectroscopy (0.3-2.5 ㎛) at various scales for bulk-rock identification, Geosphere 2 (2006) 142-160, https://doi.org/10.1130/GES00039.1.
  32. N.K.N.K. Libeesh, S. Arivazhagan, Satellite data based abundance mapping of mafic and ultramafic rocks in Mettupalayam, Tamil Nadu, India, Geol. Geophys. Environ. 47 (2021) 131-142, https://doi.org/10.7494/geol.2021.47.3.131.
  33. R.N. Clark, T.V.V. King, M. Klejwa, G.A. Swayze, N. Vergo, High spectral resolution reflectance spectroscopy of minerals, J. Geophys. Res. 95 (1990), 12653, https://doi.org/10.1029/JB095iB08p12653.
  34. A. Sengupta, M. Das Adhikari, S. Maiti, S.K. Maiti, P. Mahanta, S. Bhaumick, Identification and mapping of high-potential iron ore alteration zone across Joda, Odisha using ASTER and EO-1 hyperion data, J. Spat. Sci. 64 (2019) 491-514, https://doi.org/10.1080/14498596.2018.1485120.
  35. S. Arivazhagan, K.A. Naseer, K.A. Mahmoud, K.V. Arun Kumar, N.K. Libeesh, M.I. Sayyed, M.S. Alqahtani, E.S. Yousef, M.U. Khandaker, Gamma-ray protection capacity evaluation and satellite data based mapping for the limestone, charnockite, and gneiss rocks in the Sirugudi taluk of the Dindigul district, India, Radiat, Phys. Chem. 196 (2022), 110108, https://doi.org/10.1016/j.radphyschem.2022.110108.
  36. S. Arunkumar, K.A. Naseer, M. Yoosuf Ameen, K.A. Mahmoud, M.I. Sayyed, K. Marimuthu, D. James Silvia, R. Divina, M.S. Alqahtani, E.S. Yousef, Physical, structural, optical, and radiation screening studies on Dysprosium ions doped Niobium Bariumtelluroborate glasses, Radiat. Phys. Chem. 204 (2023), 110669, https://doi.org/10.1016/j.radphyschem.2022.110669.
  37. S. Arivazhagan, K.A. Naseer, K.A. Mahmoud, K.V. Arun Kumar, N.K. Libeesh, M.I. Sayyed, M.S. Alqahtani, E.S. Yousef, M.U. Khandaker, Gamma-ray protection capacity evaluation and satellite data based mapping for the limestone, charnockite, and gneiss rocks in the Sirugudi taluk of the Dindigul district, India, Radiat, Phys. Chem. 196 (2022), 110108, https://doi.org/10.1016/j.radphyschem.2022.110108.
  38. N.K. Libeesh, K.A. Naseer, K.A. Mahmoud, M.I. Sayyed, S. Arivazhagan, M.S. Alqahtani, E.S. Yousef, M.U. Khandaker, Applicability of the multispectral remote sensing on determining the natural rock complexes distribution and their evaluability on the radiation protection applications, Radiat. Phys. Chem. 193 (2022), 110004, https://doi.org/10.1016/j.radphyschem.2022.110004.
  39. M.I. Sayyed, N. Dwaikat, M.H.A. Mhareb, A.N. D'Souza, N. Almousa, Y.S.M. Alajerami, F. Almasoud, K.A. Naseer, S.D. Kamath, M.U. Khandaker, H. Osman, S. Alamri, Effect of TeO2 addition on the gamma radiation shielding competence and mechanical properties of boro-tellurite glass: an experimental approach, J. Mater. Res. Technol. 18 (2022) 1017-1027, https://doi.org/10.1016/j.jmrt.2022.02.130.
  40. M.I. Sayyed, M.K. Hamad, M.H. Abu Mhareb, K.A. Naseer, K.A. Mahmoud, M.U. Khandaker, H. Osman, B.H. Elesawy, Impact of modifier oxides on mechanical and radiation shielding properties of B2O3-SrO-TeO2-RO glasses (where RO = TiO2, ZnO, BaO, and PbO), Appl. Sci. 11 (2021), 10904, https://doi.org/10.3390/app112210904.
  41. K.A. Naseer, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, Impact of Bi2O3 modifier concentration on barium-zincborate glasses: physical, structural, elastic, and radiation-shielding properties, Eur. Phys. J. Plus. 136 (2021) 116, https://doi.org/10.1140/epjp/s13360-020-01056-6.
  42. S.A. Bassam, K.A. Naseer, V.K. Keerthana, P. Evangelin Teresa, C.S. Suchand Sangeeth, K.A. Mahmoud, M.I. Sayyed, M.S. Alqahtani, E. El Shiekh, M.U. Khandaker, Physical, structural, elastic and optical investigations on Dy3+ ions doped boro-tellurite glasses for radiation attenuation application, Radiat. Phys. Chem. (2023), 110798, https://doi.org/10.1016/j.radphyschem.2023.110798.
  43. M.U. Khandaker, D.A. Bradley, H. Osman, M.I. Sayyed, A. Sulieman, M.R.I. Faruque, K.A. Naseer, A.M. Idris, The significance of nuclear data in the production of radionuclides for theranostic/therapeutic applications, Radiat. Phys. Chem. 200 (2022), 110342, https://doi.org/10.1016/j.radphyschem.2022.110342.
  44. S. Yasmin, M.U. Khandaker, D.A. Bradley, H. Osman, A. Alyahyawi, M.I. Sayyed, M.R.I. Faruque, K.A. Naseer, A.M. Idris, The efficacy of various thicknesses of float glasses for protection of gamma-radiation, Radiat. Phys. Chem. 199 (2022), 110301, https://doi.org/10.1016/j.radphyschem.2022.110301.
  45. D.A. Aloraini, M.Y. Hanfi, M.I. Sayyed, K.A. Naseer, A.H. Almuqrin, P. Tamayo, O.L. Tashlykov, K.A. Mahmoud, Design and gamma-ray attenuation features of new concrete materials for low- and moderate-photons energy protection applications, Materials (Basel) 15 (2022) 4947, https://doi.org/10.3390/ma15144947.