• Title/Summary/Keyword: Radiation Risk

Search Result 886, Processing Time 0.023 seconds

A Comparative Review of Radiation-induced Cancer Risk Models

  • Lee, Seunghee;Kim, Juyoul;Han, Seokjung
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.130-140
    • /
    • 2017
  • Background: With the need for a domestic level 3 probabilistic safety assessment (PSA), it is essential to develop a Korea-specific code. Health effect assessments study radiation-induced impacts; in particular, long-term health effects are evaluated in terms of cancer risk. The objective of this study was to analyze the latest cancer risk models developed by foreign organizations and to compare the methodology of how they were developed. This paper also provides suggestions regarding the development of Korean cancer risk models. Materials and Methods: A review of cancer risk models was carried out targeting the latest models: the NUREG model (1993), the BEIR VII model (2006), the UNSCEAR model (2006), the ICRP 103 model (2007), and the U.S. EPA model (2011). The methodology of how each model was developed is explained, and the cancer sites, dose and dose rate effectiveness factor (DDREF) and mathematical models are also described in the sections presenting differences among the models. Results and Discussion: The NUREG model was developed by assuming that the risk was proportional to the risk coefficient and dose, while the BEIR VII, UNSCEAR, ICRP, and U.S. EPA models were derived from epidemiological data, principally from Japanese atomic bomb survivors. The risk coefficient does not consider individual characteristics, as the values were calculated in terms of population-averaged cancer risk per unit dose. However, the models derived by epidemiological data are a function of sex, exposure age, and attained age of the exposed individual. Moreover, the methodologies can be used to apply the latest epidemiological data. Therefore, methodologies using epidemiological data should be considered first for developing a Korean cancer risk model, and the cancer sites and DDREF should also be determined based on Korea-specific studies.

Clinical Risk Evaluation Using Dose Verification Program of Brachytherapy for Cervical Cancer (자궁경부암 근접치료 시 선량 검증 프로그램을 통한 임상적 위험성 평가)

  • Dong‑Jin, Kang;Young‑Joo, Shin;Jin-Kyu, Kang;Jae‑Yong, Jung;Woo-jin, Lee;Tae-Seong, Baek;Boram, Lee
    • Journal of radiological science and technology
    • /
    • v.45 no.6
    • /
    • pp.553-560
    • /
    • 2022
  • The purpose of this study is to evaluate the clinical risk according to the applicator heterogeneity, mislocation, and tissue heterogeneity correction through a dose verification program during brachytherapy of cervical cancer. We performed image processing with MATLAB on images acquired with CT simulator. The source was modeled and stochiometric calibration and Monte-Carlo algorithm were applied based on dwell time and location to calculate the dose, and the secondary cancer risk was evaluated in the dose verification program. The result calculated by correcting for applicator and tissue heterogeneity showed a maximum dose of about 25% higher. In the bladder, the difference in excess absolute risk according to the heterogeneity correction was not significant. In the rectum, the difference in excess absolute risk was lower than that calculated by correcting applicator and tissue heterogeneity compared to the water-based calculation. In the femur, the water-based calculation result was the lowest, and the result calculated by correcting the applicator and tissue heterogeneity was 10% higher. A maximum of 14% dose difference occurred when the applicator mislocation was 20 mm in the Z-axis. In a future study, it is expected that a system that can independently verify the treatment plan can be developed by automating the interface between the treatment planning system and the dose verification program.

Knowledge, Awareness and Health Risk Concerns on Occupational Exposure to Radiation among Firefighters in Korea (소방공무원의 직업적 방사선노출에 대한 지식, 자각 및 건강피해 우려)

  • Lee, Hyeongyeong;Yoon, Hyeongwan;Park, Jeongim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.4
    • /
    • pp.516-524
    • /
    • 2015
  • Objectives: This study aims to investigate the current status of knowledge, awareness and health risk concerns on occupational radiation exposures among firefighters in Korea. The results will provide basic information for developing a prevention program to minimize adverse health effects relating to radiation exposure among firefighters. Methods: A questionnaire was composed of general characteristics of participants, and their knowledge, awareness, health risk concerns relating to occupational radiation exposure. It was distributed by email to all of 307 firefighters in Jeollabukdo in April 2014 and 259 of them (response rate 84.3%) were responded. Answers were analyzed for descriptive statistics including frequencies and percentages. SPSS/WIN 18.0 program was utilized for statistical analysis of t-test, ANOVA and Pearson's correlation. Results: The average score of radiation protection knowledge was $5.83{\pm}1.77$ ($average{\pm}SD$) out of 10. The score of awareness and health risk concerns on radiation exposure were 4.27, 3.94 out of 5, respectively. The results indicated that the knowledge on the characteristics of radiation was marginal among the firefighters, while the awareness and health risk concerns relating to radiation exposures were relatively higher comparing to other professions. Conclusions: Knowing the characteristics of potential risks is the first step for minimizing the adverse health effects relating to the risks. Therefore, it is necessary to provide adequate training and information on radiation and exposure protection methods for firefighters.

Risk Management on Radiation Under Prolonged Exposure Situation - Focusing on the Tokyo Metropolitan Area in Japan Under the TEPCO Fukushima dai-ich NPP Accident -

  • Iimoto, Takeshi;Hayashi, Rumiko;Kuroda, Reiko;Furusawa, Mami;Umekage, Tadashi;Ohkubo, Yasushi;Takahashi, Hiroyuki;Nakamura, Takashi
    • International Journal of Safety
    • /
    • v.11 no.1
    • /
    • pp.33-36
    • /
    • 2012
  • Examples and experiences of risk management on radiation under prolonged exposure situation are shown. The accident of the Fukushima dai-ichi nuclear power plant after the great east Japan earthquake (11 March, 2011) elevates background level of environmental radiation around the east Japan. For example, ambient dose equivalent rate around Tohkatsu area next to Tokyo located about 200 km-south from the plant, is about 0.1-0.6 micro-Sv $h^{-1}$ mainly due to $^{134}Cs$ and $^{137}Cs$ falling on the ground soil. This level is about double or up to ten times higher than the genuine natural level around the area. International Commission on Radiological Protection (ICRP) recommends how to face the existing exposure situation; that is the prolonged exposure situation. Referring to ICRP's reports and/or related international/domestic documents, we have been discussing and acting to gain public's safety and relief, who have a possibility to be exposed to prolonged lower-dose radiation. Here, we introduce our several experiences on risk management, especially focusing on risk communication, radiation education to public, and stakeholder involvements into making decision in local governments on radiation protection, relating to the accident.

Radiotherapy for gastric mucosa-associated lymphoid tissue lymphoma: dosimetric comparison and risk assessment of solid secondary cancer

  • Bae, Sun Hyun;Kim, Dong Wook;Kim, Mi-Sook;Shin, Myung-Hee;Park, Hee Chul;Lim, Do Hoon
    • Radiation Oncology Journal
    • /
    • v.35 no.1
    • /
    • pp.78-89
    • /
    • 2017
  • Purpose: To determine the optimal radiotherapy technique for gastric mucosa-associated lymphoid tissue lymphoma (MALToma), we compared the dosimetric parameters and the risk of solid secondary cancer from scattered doses among anterior-posterior/ posterior-anterior parallel-opposed fields (AP/PA), anterior, posterior, right, and left lateral fields (4_field), 3-dimensional conformal radiotherapy (3D-CRT) using noncoplanar beams, and intensity-modulated radiotherapy composed of 7 coplanar beams (IMRT_co) and 7 coplanar and noncoplanar beams (IMRT_non). Materials and Methods: We retrospectively generated 5 planning techniques for 5 patients with gastric MALToma. Homogeneity index (HI), conformity index (CI), and mean doses of the kidney and liver were calculated from the dose-volume histograms. Applied the Biological Effects of Ionizing Radiation VII report to scattered doses, the lifetime attributable risk (LAR) was calculated to estimate the risk of solid secondary cancer. Results: The best value of CI was obtained with IMRT, although the HI varied among patients. The mean kidney dose was the highest with AP/PA, followed by 4_field, 3D-CRT, IMRT_co, and IMRT_non. On the other hand, the mean liver dose was the highest with 4_field and the lowest with AP/PA. Compared with 4_field, the LAR for 3D-CRT decreased except the lungs, and the LAR for IMRT_co and IMRT_non increased except the lungs. However, the absolute differences were much lower than <1%. Conclusion: Tailored RT techniques seem to be beneficial because it could achieve adjacent organ sparing with very small and clinically irrelevant increase of secondary solid cancer risk compared to the conventional techniques.

Risk Management on Radiation under Prolonged Exposure Situation - Focusing on the Tokyo Metropolitan Area in Japan Under the TEPCO Fukushima Dai-ich NPP Accident -

  • Iimoto, Takeshi;Hayashi, Rumiko;Kuroda, Reiko;Furusawa, Mami;Umekage, Tadashi;Ohkubo, Yasushi;Takahashi, Hiroyuki;Nakamura, Takashi
    • International Journal of Safety
    • /
    • v.10 no.2
    • /
    • pp.6-9
    • /
    • 2011
  • Examples and experiences of risk management on radiation under prolonged exposure situation are shown. The accident of the Fukushima dai-ichi nuclear power plant after the great east Japan earthquake (11 March, 2011) elevates background level of environmental radiation around the east Japan. For example, ambient dose equivalent rate around Tohkatsu area next to Tokyo located about 200 km-south from the plant, is about 0.1-0.6 micro-Sv $h^{-1}$ mainly due to $^{134}Cs$ and $^{137}Cs$ falling on the ground soil. This level is about double or up to ten times higher than the genuine natural level around the area. International Commission on Radiological Protection (ICRP) recommends how to face the existing exposure situation; that is the prolonged exposure situation. Referring to ICRP's reports and/or related international/domestic documents, we have been discussing how to manage this situation and acting to gain safety and relief of public, who have a possibility to be exposed to prolonged lower-dose radiation. Here, we introduce our several experiences on risk management, especially focusing on risk communication, radiation education to public, and stakeholder involvements into decision making in local governments on radiation protection, relating to the accident.

  • PDF

Running of high patient volume radiation oncology department during COVID-19 crisis in India: our institutional strategy

  • Gupta, Manoj;Ahuja, Rachit;Gupta, Sweety;Joseph, Deepa;Pasricha, Rajesh;Verma, Swati;Pandey, Laxman
    • Radiation Oncology Journal
    • /
    • v.38 no.2
    • /
    • pp.93-98
    • /
    • 2020
  • Purpose: Due to COVID 19 pandemic, the treatment of cancer patients has become a dilemma for every oncologist. Cancer patients are at an increased risk of immunosuppression and have a higher risk to acquire any infection. There are individual experiences from some centers regarding the management of cancer patients during such a crisis. So we have developed our institutional strategy to balance between COVID and cancer management. Materials and Methods: Radiation Oncology departmental meeting was held to prepare a consensus document on Radiotherapy schedules and department functioning during this pandemic. Results: Strategies were taken in form of following areas were steps need to be taken to decrease risk of infection, categorise treatment on the basis of priority, radiotherapy schedules modification, academic meetings and management of COVID positive patient/personnel in Radiation Oncology department. Conclusion: We hope to strike the balance in overcoming both the battles and emerge as winners. Stringent long term follow up will be done for assessing the response or any unforeseen treatment related sequelae.

AN INTEGRATED APPROACH TO RISK-BASED POST-CLOSURE SAFETY EVALUATION OF COMPLEX RADIATION EXPOSURE SITUATIONS IN RADIOACTIVE WASTE DISPOSAL

  • Seo, Eun-Jin;Jeong, Chan-Woo;Sato, Seichi
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.1
    • /
    • pp.6-11
    • /
    • 2010
  • Embodying the safety of radioactive waste disposal requires the relevant safety criteria and the corresponding stylized methods to demonstrate its compliance with the criteria. This paper proposes a conceptual model of risk-based safety evaluation for integrating complex potential radiation exposure situations in radioactive waste disposal. For demonstrating compliance with a risk constraint, the approach deals with important exposure scenarios from the viewpoint of the receptor to estimate the resulting risk. For respective exposure situations, it considers the occurrence probabilities of the relevant exposure scenarios as their probability of giving rise to doses to estimate the total risk to a representative person by aggregating the respective risks. In this model, an exposure scenario is simply constructed with three components:radionuclide release, radionuclide migration and environment contamination, and interaction between the contaminated media and the receptor. A set of exposure scenarios and the representative person are established from reasonable combinations of the components, based on a balance of their occurrence probabilities and the consequences. In addition, the probability of an exposure scenario is estimated on the assumption that the initiating external factors influence release mechanisms and transport pathways, and its effect on the interaction between the environment and the receptor may be covered in terms of the representative person. This integrated approach enables a systematic risk assessment for complex exposure situations of radioactive waste disposal and facilitates the evaluation of compliance with risk constraints.

A Study on the Selection of the Main Factors of Radiation Risk Index Model for assessing risk in Nondestructive Test workplace (방사선투과검사작업장 위험성 평가를 위한 방사선 위해도 지수 모델 주요인자 선정에 관한 연구)

  • Gwon, Da Yeong;Han, Ji young;Bae, Yu-Jung;Kim, Byeong-soo;Kim, Yongmin
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.4
    • /
    • pp.459-466
    • /
    • 2018
  • Risk of radiation worker and radiation workplace are being mainly assessed by exposure dose. But, the radiation used in radiation workplace and the work environment are different. Because the nondestructive work environment varies depending on the work subject, the existence and nonexistence of shielding board, and so on. So, we need to consider the various factors in effective radiation protection aspect. We conducted a survey of radiation workers with over two years' experience in NDT workplace and heared the thoughts of experts. As a result, radiation source, exposure dose, current status of workplace management, workers with personel dosimetry problem and status of periodic regulatory inspection were chosen as main factors of radiation risk index model. Also, we primarily set weighting factors in order of importance based on questionnaires. Finally, we determined weighting factor for details of main factors through the professional advice. Therefore, we will be able to develop the radiation risk index model for assessing the risk of nondestructive test workplace based on main factors that are selected through this study.

Risk Assessment of 30 MeV Cyclotron Facilities (30 MeV 사이클로트론 시설 위험성 평가)

  • Jeong, Gyo-Seong;Kim, Chong-Yeal;Lee, Jin-Woo
    • Journal of Radiation Industry
    • /
    • v.11 no.1
    • /
    • pp.39-45
    • /
    • 2017
  • A cyclotron is a kind of particle accelerator that produces a beam of charged particles for the production of medical, industrial, and research radioisotopes. More than 30 cyclotrons are operated in Korea to produce $^{18}F$, an FDG synthesis at hospitals. A 30-MeV cyclotron was installed at ARTI (Advanced Radiation Technology Institute, KAERI) mainly for research regarding isotope production. In this study, we analyze and estimate the items of risk such as the problems in the main components of the cyclotron, the loss of radioactive materials, the leakage of coolant, and the malfunction of utilities, fires and earthquakes. To estimate the occurrence frequency in an accident risk assessment, five levels, i.e., Almost certain, Likely, Possible, Unlikely, and Rare, are applied. The accident consequence level is classified under four grades based on the annual permissible dose for radiation workers and the public in the nuclear safety law. The analysis of the accident effect is focused on the radioactive contamination caused by radioisotope leakage and radioactive material leakage of a ventilation filter due to a fire. To analyze the risks, Occupation Safety and Health Acts is applied. In addition, action plans against an accident were prepared after a deep discussion among relevant researchers. In this acts, we will search for hazard and introduce the risk assessment for the research 30-MeV cyclotron facilities of ARTI.