• Title/Summary/Keyword: Radiation Protection

Search Result 2,297, Processing Time 0.031 seconds

A Study on the Improvement of Cybersecurity Training System in Nuclear Facilities (원자력 시설 사이버보안 훈련체계 개선 방안 연구)

  • Kim, Hyun-hee;Lee, Daesung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.187-188
    • /
    • 2022
  • As information processing technology develops with the trend of the times, the possibility of cyber threats to nuclear facilities is increasing. In the 2000s, there was a growing perception that cyberattacks on nuclear facilities were needed, and in fact, a cybersecurity regulatory system for nuclear power plants began to be established to prepare for cyberattacks. In Korea, in order to prepare for cyber threats, in 2013 and 2014, the Act on Protection and Radiation Disaster Prevention, Enforcement Decree, and Enforcement Rules of Nuclear Facilities, etc., and notices related to the Radioactive Disaster Prevention Act were revised. In 2015, domestic nuclear operators prepared information system security regulations for each facility in accordance with the revised laws and received approval from the Nuclear Safety Commission for implementation of information system security regulations divided into seven stages. In 2019, a special inspection for step-by-step implementation was completed, and since 2019, the cybersecurity system of operators has been continuously inspected through regular inspections. In this paper, we present some measures to build improved training to suit the steadily revised inspection of the nuclear facility cybersecurity system to counter cyber threats to the ever-evolving nuclear facilities.

  • PDF

Can ultra-low-dose computed tomography reliably diagnose and classify maxillofacial fractures in the clinical routine?

  • Gerlig Widmann;Marcel Dangl;Elisa Lutz;Bernhard Fleckenstein;Vincent Offermanns;Eva-Maria Gassner;Wolfgang Puelacher;Lukas Salbrechter
    • Imaging Science in Dentistry
    • /
    • v.53 no.1
    • /
    • pp.69-75
    • /
    • 2023
  • Purpose: Maxillofacial trauma predominantly affects young adults between 20 and 40 years of age. Although radioprotection is a legal requirement, the significant potential of dose reduction in computed tomography (CT) is still underused in the clinical routine. The objective of this study was to evaluate whether maxillofacial fractures can be reliably detected and classified using ultra-low-dose CT. Materials and Methods: CT images of 123 clinical cases with maxillofacial fractures were classified by two readers using the AOCOIAC software and compared with the corresponding results from post-treatment images. In group 1, consisting of 97 patients with isolated facial trauma, pre-treatment CT images at different dose levels (volumetric computed tomography dose index: ultra-low dose, 2.6 mGy; low dose, <10 mGy; and regular dose, <20 mGy) were compared with post-treatment cone-beam computed tomography (CBCT). In group 2, consisting of 31 patients with complex midface fractures, pre-treatment shock room CT images were compared with post-treatment CT at different dose levels or CBCT. All images were presented in random order and classified by 2 readers blinded to the clinical results. All cases with an unequal classification were re-evaluated. Results: In both groups, ultra-low-dose CT had no clinically relevant effect on fracture classification. Fourteen cases in group 2 showed minor differences in the classification code, which were no longer obvious after comparing the images directly to each other. Conclusion: Ultra-low-dose CT images allowed the correct diagnosis and classification of maxillofacial fractures. These results might lead to a substantial reconsideration of current reference dose levels.

Conceptual design of a dual drum-controlled space molten salt reactor (D2 -SMSR): Neutron physics and thermal hydraulics

  • Yongnian Song;Nailiang Zhuang;Hangbin Zhao;Chen Ji;Haoyue Deng;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2315-2324
    • /
    • 2023
  • Space nuclear reactors are becoming popular in deep space exploration owing to their advantages of high-power density and stability. Following the fourth-generation nuclear reactor technology, a conceptual design of the dual drum-controlled space molten salt reactor (D2-SMSR) is proposed. The reactor concept uses molten salt as fuel and heat pipes for cooling. A new reactivity control strategy that combines control drums and safety drums was adopted. Critical physical characteristics such as neutron energy spectrum, neutron flux distribution, power distribution and burnup depth were calculated. Flow and heat transfer characteristics such as natural convection, velocity and temperature distribution of the D2-SMSR under low gravity conditions were analyzed. The reactivity control effect of the dual-drums strategy was evaluated. Results showed that the D2-SMSR with a fast spectrum could operate for 10 years at the full power of 40 kWth. The D2-SMSR has a high heat transfer coefficient between molten salt and heat pipe, which means that the core has a good heat-exchange performance. The new reactivity control strategy can achieve shutdown with one safety drum or three control drums, ensuring high-security standards. The present study can provide a theoretical reference for the design of space nuclear reactors.

Gamma ray attenuation behaviors and mechanism of boron rich slag/epoxy resin shielding composites

  • Mengge Dong;Suying Zhou ;He Yang ;Xiangxin Xue
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2613-2620
    • /
    • 2023
  • Excellent thermal neutron absorption performance of boron expands the potential use of boron rich slag to prepare epoxy resin matrix nuclear shielding composites. However, shielding attenuation behaviors and mechanism of the composites against gamma rays are unclear. Based on the radiation protection theory, Phy-X/PSD, XCOM, and 60Co gamma ray source were integrated to obtain the shielding parameters of boron rich slag/epoxy resin composites at 0.015-15 MeV, which include mass attenuation coefficient (µt), linear attenuation coefficient (µ), half value thickness layer (HVL), electron density (Neff), effective atomic number (Zeff), exposure buildup factor (EBF) and exposure absorption buildup factor (EABF).µt, µ, HVL, Neff, Zeff, EBF and EABF are 0.02-7 cm2/g, 0.04-17 cm-1, 0.045-20 cm, 5-14, 3 × 1023-8 × 1023 electron/g, 0-2000, and 0-3500. Shielding performance is BS4, BS3, BS3, BS1 in descending order, but worse than ordinary concrete. µ and HVL of BS1-BS4 for 60Co gamma ray is 0.095-0.110 cm-1 and 6.3-7.2 cm. Shielding mechanism is main interactions for attenuation gamma ray by BS1-BS4 are elements with higher content or higher atomic number via Photoelectric Absorption at low energy range, and elements with higher content via Compton Scattering and Pair Production in Nuclear Field at middle and higher energy range.

Combination of red ginseng and velvet antler extracts prevents skin damage by enhancing the antioxidant defense system and inhibiting MAPK/AP-1/NF-κB and caspase signaling pathways in UVB-irradiated HaCaT keratinocytes and SKH-1 hairless mice

  • Van-Long Truong;Yeon-Ji Bae;Ji-Hong Bang;Woo-Sik Jeong
    • Journal of Ginseng Research
    • /
    • v.48 no.3
    • /
    • pp.323-332
    • /
    • 2024
  • Background: Studies have reported that the combination of two or more therapeutic compounds at certain ratios has more noticeable pharmaceutical properties than single compounds and requires reduced dosage of each agent. Red ginseng and velvet antler have been extensively used in boosting immunity and physical strength and preventing diseases. Thus, this study was conducted to elucidate the skin-protective potentials of red ginseng extract (RGE) and velvet antler extract (VAE) alone or in combination on ultraviolet (UVB)-irradiated human keratinocytes and SKH-1 hairless mice. Methods: HaCaT cells were preincubated with RGE/VAE alone or in combination for 2 h before UVB (30 mJ/cm2) irradiation. SKH-1 mice were orally given RGE/VAE alone or in combination for 15 days before exposure to single dose of UVB (600 mJ/cm2). Treated cells and treated skin tissues were collected and subjected to subsequent experiments. Results: RGE/VAE pretreatment alone or in combination significantly prevented UVB-induced cell death, apoptosis, reactive oxygen species production, and DNA damage in keratinocytes and SKH-1 mouse skins by downregulating mitogen-activated protein kinases/activator protein 1/nuclear factor kappa B and caspase signaling pathways. These extracts also strengthened the antioxidant defense systems and skin barriers in UVB-irradiated HaCaT cells and SKH-1 mouse skins. Furthermore, RGE/VAE co-administration appeared to be more effective in preventing UVB-caused skin injury than these extracts used alone. Conclusion: Overall, these findings suggest that the consumption of RGE/VAE, especially in combination, offers a protective ability against UVB-caused skin injury by preventing inflammation and apoptosis and enhancing antioxidant capacity.

Conceptual design study on Plutonium-238 production in a multi-purpose high flux reactor

  • Jian Li;Jing Zhao;Zhihong Liu;Ding She;Heng Xie;Lei Shi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.147-159
    • /
    • 2024
  • Plutonium-238 has always been considered as the one of the promising radioisotopes for space nuclear power supply, which has long half-life, low radiation protection level, high power density, and stable fuel form at high temperatures. The industrial-scale production of 238Pu mainly depends on irradiating solid 237NpO2 target in high flux reactors, however the production process faces problems such as large fission loss and high requirements for product quality control. In this paper, a conceptual design study of producing 238Pu in a multi-purpose high flux reactor was evaluated and analyzed, which includes a sensitivity analysis on 238Pu production and a further study on the irradiation scheme. It demonstrated that the target structure and its location in the reactor, as well as the operation scheme has an impact on 238Pu amount and product quality. Furthermore, the production efficiency could be improved by optimizing target material concentration, target locations in the core and reflector. This work provides technical support for irradiation production of 238Pu in high flux reactors.

Determination of $^{14}C$ in Environmental Samples Using $CO_2$ Absorption Method ($Co_2$ 흡수법에 의한 환경시료중 $^{14}C$ 정량)

  • Lee, Sang-Kuk;Kim, Chang-Kyu;Kim, Cheol-Su;Kim, Yong-Jae;Rho, Byung-Hwan,
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.1
    • /
    • pp.35-46
    • /
    • 1997
  • A simple and precise method of $^{14}C$ was developed to analyze $^{14}C$ in the environment samples using a commercially available $^{14}CO_2$ absorbent and a liquid scintillation counter. An air sampler and a combustion system were developed to collect HTO and $^{14}CO_2$ in the air and the biological samples simultaneously. The collection yield of $^{14}CO_2$ by the air sampler was in the range of 73-89% . The yield of the combustion system was 97%. In preparing samples for counting, the optimum ratio of $CO_2$ absorbent to the scintillator for mixing was 1:1. No variation of the specific activity of $^{14}C$ in the counting sample was observed up to 70 days after preparation of the samples. The detection limit for$^{14}C$ was 0.025 Bq/gC, which is the level applicable to the natural level of $^{14}C$. The analytical result of $^{14}C$ obtained by the present method were within ${\pm}6%$ of the relative error from the one by the benzene synthesis. The specific activity of $^{14}C$ in the air collected at Taejon during the period of October 1996 ranged from 0.26 to 0.27 Bq/gC. The specific activity of $^{14}C$ in the air collected at 1km from the Wolsong nuclear power plant a 679 MWe PHWR, was $0.54{\pm}0.03$ Bq/gC. The ranges of specific activities of $^{14}C$ in the pine needles and the vegetations from the areas around the Wolsong nuclear power plant were 0.56-0.67 Bq/gC and 0.23-1.41 Bq/gC, respectively.

  • PDF

Measurement of Radon Daughters' Radioactivities by Using Single Filtering Method (단일집진법(單一集塵法)에 의(依)한 라돈 붕괴생성물(崩壞生成物)의 농도측정(濃度測定))

  • Chang, Si-Young;Ro, Seung-Gy;Hong, Jong-Sook
    • Journal of Radiation Protection and Research
    • /
    • v.6 no.1
    • /
    • pp.25-30
    • /
    • 1981
  • A measurement has been made for the radioactivities (or concentrations) of radon daughters, i.e., RaA, RaB and RaC in airborne dust by means of single filtering method. This is to evaluate the radioactivities in terms of Ci or WL (working level) from gross alpha counts measured in the selected-time intervals after an air sample is taken from a membrane filter paper with a mean pore size of $0.8{\mu}m$. This work involves determinations of standard deviation in radioactivities, radioactive equilibrium factor and ratio. It appears that a concentration of total radon daughters is $0.30{\sim}2.36pCi/l\;or\;0.89{\times}10^{-3}{\sim}6.57{\times}10^{-3}WL$, depending on the sampling time. Generally the highest concentration was observed around nine o'clock in a day while the lowest value was obtained around seventeen o'clock. Standard deviations based on counting statistics of RaA's, RaB's and RaC's concentrations are ${\pm}57.75%,\;{\pm}22.32%\;and\;{\pm}31.29%$, respectively. It is revealed that the radioactive equilibrium factor is 0.322 while the radioactive equilibrium ratio is of pattern $C_1>C_2>C_3$ in general. Here $C_1,\;C_2\;and\;C_3$ stand for concentrations of RaA,RaB and RaC, respectively.

  • PDF

Establishment of Release Limits for Airborne Effluent into the Environment Based on ALARA Concept (ALARA 개념(槪念)에 의한 기체상방사성물질(氣體狀放射性物質)의 환경방출한도(環境放出限度) 설정(設定))

  • Lee, Byung-Ki;Cha, Moon-Hoe;Nam, Soon-Kwon;Chang, Si-Young;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.10 no.1
    • /
    • pp.50-63
    • /
    • 1985
  • A derivation of new release limit, named Derived Release Limit(DRL), into the atomsphere from a reference nuclear power plant has been performed on the basis of the new system of dose limitation recommended by the ICRP, instead of the (MPC)a limit which has been currently used until now as a general standard for radioactive effluents in Korea. In DRL Calculation, a Concentration Factor Method was applied, in which the concentrations of long-term routinely released radionuclides were in equilibrium with dose in environment under the steady state condition. The analytical model used in the exposure pathway analysis was the one which has been suggested by the USNRC and the exposure limits applied in this analysis were those recommended by the USEPA lately. In the exposure pathway analysis, all of the pathways are not considered and some may be excluded either because they are not applicable or their contribution to the exposure is insignificant compared with other pathways. In case, the environmental model developed in this study was applied to the Kori nuclear power plant as the reference power plant, the highest DRL value was calculated to be as $9.10{\times}10^6Ci/yr$ for Kr-85 in external whole body exposure from the semi-infinite radioactive cloud, while the lowest DRL value was observed 3.64Ci/yr for Co-60 in external whole body exposure from the contaminated ground, by the radioactive particulates. The most critical exposure pathway to an individual in the unrestricted area of interest (Kilchun-Ri, 1.3 km to the north of the release point) seems to be the exposure pathway from the contaminated ground and the most critical radionuclide in all pathways appears to be Co-60 in the same pathway. When comparing the actual release rate from KNU-l in 1982 with the DRL's obtained here the release of radionuclides from KNU-1 were much lower than the DRL's and it could be conclued that the exposure to an individual had been kept below the exposure limits recommended by the USEPA.

  • PDF

Development of Three-Dimensional Trajectory Model for Detecting Source Region of the Radioactive Materials Released into the Atmosphere (대기 누출 방사성물질 선원 위치 추적을 위한 3차원 궤적모델 개발)

  • Suh, Kyung-Suk;Park, Kihyun;Min, Byung-Il;Kim, Sora;Yang, Byung-Mo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.1
    • /
    • pp.31-39
    • /
    • 2016
  • Background: It is necessary to consider the overall countermeasure for analysis of nuclear activities according to the increase of the nuclear facilities like nuclear power and reprocessing plants in the neighboring countries including China, Taiwan, North Korea, Japan and South Korea. South Korea and comprehensive nuclear-test-ban treaty organization (CTBTO) are now operating the monitoring instruments to detect radionuclides released into the air. It is important to estimate the origin of radionuclides measured using the detection technology as well as the monitoring analysis in aspects of investigation and security of the nuclear activities in neighboring countries. Materials and methods: A three-dimensional forward/backward trajectory model has been developed to estimate the origin of radionuclides for a covert nuclear activity. The developed trajectory model was composed of forward and backward modules to track the particle positions using finite difference method. Results and discussion: A three-dimensional trajectory model was validated using the measured data at Chernobyl accident. The calculated results showed a good agreement by using the high concentration measurements and the locations where was near a release point. The three-dimensional trajectory model had some uncertainty according to the release time, release height and time interval of the trajectory at each release points. An atmospheric dispersion model called long-range accident dose assessment system (LADAS), based on the fields of regards (FOR) technique, was applied to reduce the uncertainties of the trajectory model and to improve the detective technology for estimating the radioisotopes emission area. Conclusion: The detective technology developed in this study can evaluate in release area and origin for covert nuclear activities based on measured radioisotopes at monitoring stations, and it might play critical tool to improve the ability of the nuclear safety field.