• Title/Summary/Keyword: Radiation Paradigm

Search Result 19, Processing Time 0.026 seconds

CLARIFYING THE PARADIGM ON RADIATION EFFECTS & SAFETY MANAGEMENT: UNSCEAR REPORT ON ATTRIBUTION OF EFFECTS AND INFERENCE OF RISKS

  • Gonzalez, Abel J.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.4
    • /
    • pp.467-474
    • /
    • 2014
  • The aim of this paper is to describe a relatively recent international agreement on the widely debated concepts of: (i) attributing effects to low dose radiation exposure situations that have occurred in the past and, (ii) inferring radiation risk to situations that are planned to occur in the future. An important global consensus has been recently achieved on these fundamental issues at the level of the highest international intergovernmental body: the General Assembly of the United Nations. The General Assembly has welcomed with appreciation a scientific report on attributing health effects to radiation exposure and inferring risks that had been prepared the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) following a formal request by the General Assembly.

Radiation Induced Lung Injury: Prediction, Assessment and Management

  • Giridhar, Prashanth;Mallick, Supriya;Rath, Goura Kishore;Julka, Pramod Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2613-2617
    • /
    • 2015
  • Radiation induced lung injury has long been considered a treatment limiting factor for patients requiring thoracic radiation. This radiation induced lung injury happens early as well as late. Radiation induced lung injury can occur in two phases viz. early (< 6 months) when it is called radiation pneumonitis and late (>6 months) when it is called radiation induced lung fibrosis. There are multiple factors that can be patient, disease or treatment related that predict the incidence and severity of radiation pneumonitis. Radiation induced damage to the type I pneumocytes is the triggering factor to initiate such reactions. Over the years, radiation therapy has witnessed a paradigm shift in radiation planning and delivery and successfully reduced the incidence of lung injury. Radiation pneumonitis is usually a diagnosis of exclusion. Steroids, ACE inhibitors and pentoxyphylline constitute the cornerstone of therapy. Radiation induced lung fibrosis is another challenging aspect. The pathophysiology of radiation fibrosis includes continuing inflammation and microvascular changes due to pro-angiogenic and profibrogenic stimuli resembling those in adult bronchiectasis. General supportive management, mobilization of airway secretions, anti-inflammatory therapy and management of acute exacerbations remains the treatment option. Radiation induced lung injury is an inevitable accompaniment of thoracic radiation.

History of Radiation Therapy Technology

  • Huh, Hyun Do;Kim, Seonghoon
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.124-134
    • /
    • 2020
  • Here we review the evolutionary history of radiation therapy technology through the festschrift of articles in celebration of the 30th anniversary of Korean Society of Medical Physics (KSMP). Radiation therapy technology used in clinical practice has evolved over a long period of time. Various areas of science, such as medical physics, mechanical engineering, and computer engineering, have contributed to the continual development of new devices and techniques. The scope of this review was restricted to two areas; i.e., output energy production and functional development, because it is not possible to include all development processes of this technology due to space limitations. The former includes the technological transition process from the initial technique applied to the first model to the latest technique currently used in a variety of machines. The latter has had a direct effect on treatment outcomes and safety, which changed the paradigm of radiation therapy, leading to new guidelines on dose prescriptions, innovation of dose verification tools, new measurement methods and calculation systems for radiation doses, changes in the criteria for errors, and medical law changes in all countries. Various complex developments are covered in this review. To the best of our knowledge, there have been few reviews on this topic and we consider it very meaningful to provide a review in the festschrift in celebration of the 30th anniversary of the KSMP.

COSMOLOGICAL LINEAR PERTURBATION THEORY (우주구조 선형건드림 이론)

  • Hwang, Jai-Chan
    • Publications of The Korean Astronomical Society
    • /
    • v.26 no.2
    • /
    • pp.55-70
    • /
    • 2011
  • Cosmological linear perturbation theory has fundamental importance in securing the current cosmological paradigm by connecting theories with observations. Here we present an explanation of the method used in relativistic cosmological perturbation theory and show the derivation of basic perturbation equations.

Mixed Reality Based Radiation Safety Education Simulator Platform Development : Focused on Medical Field (혼합현실 기반 방사선 안전교육 시뮬레이터 플랫폼 개발 : 의료분야 중심으로)

  • Park, Hyong-Hu;Shim, Jae-Goo;Kwon, Soon-Mu
    • Journal of radiological science and technology
    • /
    • v.44 no.2
    • /
    • pp.123-131
    • /
    • 2021
  • In this study, safety education contents for medical radiation workers were produced based on Mixed Reality(MR). Currently, safety training for radiation workers is based on theory. This is insufficient in terms of worker satisfaction and efficiency. To address this, we created ICT(Information and Communication Technologies)-based MR radiation worker safety education content. The expected effect of Mixed Reality worker safety education content is that education is possible without space and time constraints, realistic education is possible without on-site training, and interaction between images is possible through reality-based 3D images, enabling self-directed learning Is that. In addition, learning in a virtual space expressed through HMD(Head Mounted Display) is expected to make education more enjoyable and increase concentration, thereby increasing the efficiency of education. A quantitative evaluation was conducted by an accredited institution and a qualitative evaluation was performed on users, which received excellent evaluation. The MR safety education conducted in this study is expected to be of great help to the education of medical radiation workers, and is expected to develop into a new educational paradigm as online education in accordance with Corona 19 progresses.

Imaging Neuroreceptors in the Living Human Brain

  • Wagner Jr Henry N.;Dannals Robert F.;Frost J. James;Wong Dean F.;Ravert Hayden T.;Wilson Alan A.;Links Jonathan M.;Burns H. Donald;Kuhar Michael J.;Snyder Solomon H.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.18 no.2
    • /
    • pp.17-23
    • /
    • 1984
  • For nearly a century it has been known that chemical activity accompanies mental activity, but only recently has it been possible to begin to examine its exact nature. Positron-emitting radioactive tracers have made it possible to study the chemistry of the human mind in health and disease, using chiefly cyclotron-produced radionuclides, carbon-11, fluorine-18 and oxygen-15. It is now well established that measurable increases in regional cerebral blood flow, glucose and oxygen metabolism accompany the mental functions of perception, cognition, emotion and motion. On May 25, 1983 the first imaging of a neuroreceptor in the human brain was accomplished with carbon-11 methyl spiperone, a ligand that binds preferentially to dopamine-2 receptors, 80% of which are located in the caudate nucleus and putamen. Quantitative imaging of serotonin-2, opiate, benzodiazapine and muscarinic cholinergic receptors has subsequently been accomplished. In studies of normal men and women, it has been found that dopamine and serotonin receptor activity decreases dramatically with age, such a decrease being more pronounced in men than in women and greater in the case of dopamine receptors than serotonin-2 receptors. Preliminary studies in patients with neuropsychiatric disorders suggests that dopamine-2 receptor activity is diminished in the caudate nucleus of patients with Huntington's disease. Positron tomography permits quantitative assay of picomolar quantities of neuro-receptors within the living human brain. Studies of patients with Parkinson's disease, Alzheimer's disease, depression, anxiety, schizophrenia, acute and chronic pain states and drug addiction are now in progress. The growth of any scientific field is based on a paradigm or set of ideas that the community of scientists accepts. The unifying principle of nuclear medicine is the tracer principle applied to the study of human disease. Nineteen hundred and sixty-three was a landmark year in which technetium-99m and the Anger camera combined to move the field from its latent stage into a second stage characterized by exponential growth within the framework of the paradigm. The third stage, characterized by gradually declining growth, began in 1973. Faced with competing advances, such as computed tomography and ultrasonography, proponents and participants in the field of nuclear medicine began to search for greener pastures or to pursue narrow sub-specialties. Research became characterized by refinements of existing techniques. In 1983 nuclear medicine experienced what could be a profound change. A new paradigm was born when it was demonstrated that, despite their extremely low chemical concentrations, in the picomolar range, it was possible to image and quantify the distribution of receptors in the human body. Thus, nuclear medicine was able to move beyond physiology into biochemistry and pharmacology. Fundamental to the science of pharmacology is the concept that many drugs and endogenous substances, such as neurotransmitters, react with specific macromolecules that mediate their pharmacologic actions. Such receptors are usually identified in the study of excised tissues, cells or cell membranes, or in autoradiographic studies in animals. The first imaging and quantification of a neuroreceptor in a living human being was performed on May 25, 1983 and reported in the September 23, 1983 issue of SCIENCE. The study involved the development and use of carbon-11 N-methyl spiperone (NMSP), a drug with a high affinity for dopamine receptors. Since then, studies of dopamine and serotonin receptors have been carried out in over 100 normal persons or patients with various neuropsychiatric disorders. Exactly one year later, the first imaging of opitate receptors in a living human being was performed [1].

  • PDF

Use of Statistical Process Control for Quality Assurance in Radiation Therapy (방사선치료에서의 품질보증을 위한 통계적공정관리의 활용)

  • Cheong, Kwang-Ho
    • Progress in Medical Physics
    • /
    • v.26 no.2
    • /
    • pp.59-71
    • /
    • 2015
  • The goal of quality assurance (QA) is to minimize systematic errors in order to maintain the quality of a certain process. Statistical process control (SPC) has been utilized for QA in radiation therapy field since 2005 and is changing QA paradigm. Its purpose is to maintain a process within the given control limits while monitoring of error trends such as variation or dispersion. SPC can be applied to all QA aspects of radiotherapy; however, a medical physicist should have enough knowledge about the application of SPC to QC/QA procedures. In this paper, the author introduce a concept of SPC and review some previously reported studies those used SPC for QA in radiation therapy.

Difference of total activation depends on stimulation paradigm at motor and visual cortices and cerebellum (운동과 시각 피질, 소뇌에서 자극변화에 따른 총활성화의 차이)

  • Chung, S.C.;Song, I.C.;Chang, K.H.;Yu, B.K.;Mun, C.W.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.289-290
    • /
    • 1998
  • Purpose To investigate the difference of total activation in visual area, motor area, and cerebellum according to the stimulation paradigm. Materials and Methods Functional MR imaging was performed in 5 healthy volunteers with visual and motor activity using EPI technique. LED and Checker-Board stimulation were performed for visual activity. Thumb motion and Finger tapping were performed for motor and cerebellum activity. Time course data was obtained by calculating the total activation which was defined as the number of activated pixels x averaged pixel intensity. Results In the case of visual activity with LED stimulation, we found increased total activity of more than 100% compared with Checker-Board stimulation. In the case of motor area and cerebellum with Finger tapping stimulation, we found increased total activity of more than 100% and 150%, respectively compared with Thumb motion stimulation.

  • PDF

Development of International Education and Training Program for Building Practical Competence in Radiation Protection (방사선방호 실무역량 강화를 위한 국제 교육훈련 과정 개발)

  • Kim, Hyun Kee;Son, Miyeon;Ko, Han-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Education and training is an important means of promoting safety culture and enhancing the level of competence of radiation worker in radiation protection. The existing international nuclear education and training of short duration has been carried out on the high-level officials and focussed on the classroom based training. The developing countries has been asking for support to cultivate their own technical experts to Korea which is a donor country exporting nuclear power plants. This paper summarizes the results of developing and operating the international education and training course to froster technical experts in radiation protection that emphasized practical training sessions and technical visits using the excellent domestic radiation facilities and infrastructure of education and training. It mentions the procedures of assessment and feedback as well. In an effort to maximize teaching-learning effects and to maintain consistency of the learning objectives, methods and assessment, SAT methodology has been applied on the processes of developing and operating the course. In the comparative and final assessment which were conducted at the beginning or at the end of training course, participants' average score increased around 2 points. The questionnaire of participants showed a high level of satisfaction of 4.0 points or above for the most of the questions. These imply teaching-learning methods applied to it might be effective. The teaching-learning methodologies may provide the opportunity to develop the customized training course for bringing up international technical experts and to shift educational paradigm from theory-oriented to on-site practice-based education.

Phytomonitoring of the Genotoxicity of Environmental Pollutants: An Application to Armenian Nuclear Power Plant

  • Kim, Jin Kyu;Aroutiounian, Rouben M.;Nebish, Anna A.;Kim, Jin-Hong
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.181-185
    • /
    • 2015
  • Today the biosafety evaluation, a common problem of vital importance, is based on internationally proved test-systems, standards and techniques. The paradigm of biosafety includes multidisciplinary approach, a combination of physical, chemical and biological tests to monitor the environmental level of pollutants and needs to be improved by modern approaches. The genetic risk of environmental pollutions has long been studied by many researchers. In this study, used was the known sensitive plant test-system, clones of plant Tradescantia (spiderwort) able to detect gene mutations (frequency of mutational events and formation of micronuclei) in combination with chemical and, in some instances, with radiological measurements. In addition, male gametophyte generation of fruit trees was applied as bioindicators of genotoxicity. The obtained results did not show any significant increase along with wind direction. As for the male gametophyte assay, the fertility of the investigated fruit-trees near to NPP did not significantly differ from that of the control point. The influence of the NPP on the male generative system of the investigated taxa of fruit trees for the investigated year was not revealed. The system described needs to be expanded by species of interest (human) as there is a difficulty to transfer the revealed dose correlations to humans. The development of this idea includes various levels: population (epidemiological studies), individual, cellular, molecular (DNA), etc.