• 제목/요약/키워드: Radiation Monitoring

검색결과 542건 처리시간 0.034초

CHARACTERISTICS OF THE KAERI NEUTRON REFERENCE FIELDS FOR THE CALIBRATION OF NEUTRON MONITORING INSTRUMENTS

  • Kim, Bong-Hwan;Kim, Jang-Lyul;Chang, Si-Young;Cho, Gyu-Seong
    • Journal of Radiation Protection and Research
    • /
    • 제26권3호
    • /
    • pp.243-248
    • /
    • 2001
  • Neutron reference fields of Korea Atomic Energy Research Institute (KAERI) for calibrating neutron measuring devices to be used in radiation workplace monitoring consist of two kinds of neutron spectra, the direct and the scattered neutron fields, which are produced by using radionuclide neutron sources, 252Cf and 241AmBe sources. Necessary parameters for calibration such as the anisotropy factor of each neutron source and the room-scattered fraction of some neutron surveymeters in the KAERI calibration facility were determined by calculation or measurement. Spectral measurement of scattered neutron fields were performed at each reference calibration point using a Bonner Multi-sphere Spectrometer (BMS) and the dosimetric quantities for calibration also estimated from the neutron energy spectra which were unfolded using the BUNKI code.

  • PDF

Head Mount Display (HMD)를 이용한 안구의 고정 및 감시장치의 임상사용 가능성 확인 (Clinical Implementation of an Eye Fixing and Monitoring System with Head Mount Display)

  • 고영은;박성호;이병용;안승도;임상욱;이상욱;신성수;김종훈;최은경;노영주
    • 한국의학물리학회지:의학물리
    • /
    • 제18권1호
    • /
    • pp.1-6
    • /
    • 2007
  • CCD 카메라가 부착된 head mounted display (HMD)를 이용하여 포도막 흑색종(uveal melanoma)을 치료하기 위해 외부 침투적 고정장치 없이 안구의 움직임을 감시할 수 있는 안구의 고정 및 감시장치를 제작하여 임상 사용 가능성을 확인하고자 하였다. 안구 고정 및 감시장지 시스템은 환자의 안구를 고정시키기 위해 환자의 초점을 일정하게 해 줄 수 있는 스크린이 달린 head mount display (HMD) 장치와 고정된 안구를 감시할 수 있게 HWD에 부착시킨 CCD 카메라, 그리고 환자의 머리를 고정시키는 마스크로 구성되어 있다. CCD 카메라가 부착되어 있는 HMD를 마스크 위에 부착하여, HMD의 스크린에서 보여주는 기준점을 환자가 주시하도록 하여 환자의 안구를 고정시킬 수 있었다. 본 연구는 4명의 지원자와 정위적 방사선수술을 시행하는 한 명의 포도막 흑색종 환자를 대상으로 하였다. 4명의 지원자에게서는 셋업에 따른 오차와 안구의 움직임을 분석하는 자료를 얻었고, 한 명의 환자에게서는 임상 사용의 가능성을 확인하였다. 환자는 HMD를 착용한 후 스크린에서 보여지는 기준점에 안구를 고정시킨 후, CT 촬영을 하였다. 방사선 수술기간 동안에도 치료 전에 치료계획을 위한 CT 촬영 시와 동일한 조건에서 매일 CT 촬영을 시행하였고, 이것을 치료계획을 위해 촬영한 CT 영상과 비교하여, 방사선 치료를 받는 기간 동안 수정체의 움직임을 비교하였다. 4명의 지원자의 자료에서 얻은 셋업에 따른 오차는 1mm 이내였으며, 안구의 움직임도 2mm 이내의 오차범위 내에 고정할 수 있었다. 본 연구에서 제작한 안구의 고정 및 감시장치는 외부 침투적 고정장치 없이 환자의 안구를 성공적으로 고정시켜 포도막 흑색종의 정위적 방사선수술을 시행할 수 있게 하였다. 이로써 자체 제작한 안구의 고정 및 감시장치의 임상 사용의 가능성을 확인하였다.

  • PDF

Statistical Analysis of Count Rate Data for On-line Seawater Radioactivity Monitoring

  • Lee, Dong-Myung;Cong, Binh Do;Lee, Jun-Ho;Yeo, In-Young;Kim, Cheol-Su
    • Journal of Radiation Protection and Research
    • /
    • 제44권2호
    • /
    • pp.64-71
    • /
    • 2019
  • Background: It is very difficult to distinguish between a radioactive contamination source and background radiation from natural radionuclides in the marine environment by means of online monitoring system. The objective of this study was to investigate a statistical process for triggering abnormal level of count rate data measured from our on-line seawater radioactivity monitoring. Materials and Methods: Count rate data sets in time series were collected from 9 monitoring posts. All of the count rate data were measured every 15 minutes from the region of interest (ROI) for $^{137}Cs$ ($E_{\gamma}=661.6keV$) on the gamma-ray energy spectrum. The Shewhart ($3{\sigma}$), CUSUM, and Bayesian S-R control chart methods were evaluated and the comparative analysis of determination methods for count rate data was carried out in terms of the false positive incidence rate. All statistical algorithms were developed using R Programming by the authors. Results and Discussion: The $3{\sigma}$, CUSUM, and S-R analyses resulted in the average false positive incidence rate of $0.164{\pm}0.047%$, $0.064{\pm}0.0367%$, and $0.030{\pm}0.018%$, respectively. The S-R method has a lower value than that of the $3{\sigma}$ and CUSUM method, because the Bayesian S-R method use the information to evaluate a posterior distribution, even though the CUSUM control chart accumulate information from recent data points. As the result of comparison between net count rate and gross count rate measured in time series all the year at a monitoring post using the $3{\sigma}$ control charts, the two methods resulted in the false positive incidence rate of 0.142% and 0.219%, respectively. Conclusion: Bayesian S-R and CUSUM control charts are better suited for on-line seawater radioactivity monitoring with an count rate data in time series than $3{\sigma}$ control chart. However, it requires a continuous increasing trend to differentiate between a false positive and actual radioactive contamination. For the determination of count rate, the net count method is better than the gross count method because of relatively a small variation in the data points.

다목적 수동형 라돈농도 측정기 개발 (Development of A Multipurpose Passive Type Radon Monitor)

  • 이봉재;박영웅
    • 동위원소회보
    • /
    • 제21권4호
    • /
    • pp.55-65
    • /
    • 2006
  • A passive type radon monitor adopting two silicon PIN detector as radiation detector has been developed, manufactured and test-evaluated. A radiation signal processing circuit has been electronically tested and then the radiation detection characteristics of this instrument has been performance-tested by using reference radon concentration and a reference photon radiation field. As a result, in a electronic performance test, radiation signals from each detector were well observed in each signal processing circuit. The radiation detection sensitivity of this instrument after several test-irradiations to a Cs-137 gamma radiation source and a standard radon concentration appeared to be 1.37 cph/$\mu$Svh-1 and 1.66 pCi/L respectively. The developed radon monitor in this paper could be used conveniently in monitoring of radon concentration in buildings which population utilize in Korea.

  • PDF

Development of Dark-striped Field Mice, Apodemus agrarius, as a Biological Dosimeter in a Radio-ecological Monitoring System 3. Radio-sensitivity between A. agrarius and ICR Mice

  • Kim Hee-sun;Nishimura Y.;Jin Young-Woo;Kim Chong-Soon
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 춘계 학술대회
    • /
    • pp.513-517
    • /
    • 2005
  • This study examined the possibility of using striped field mice as a biological dosimeter or indicator for the environmental radio-surveillance. For this study, the external morphological characteristics and isoenzymic types of dark-striped field mice were studied after they were captured. Among the morphological external characteristics, the dark-brown coat, dark back stripe, head-to-tail length, tail length, and ear length matched the taxonomical characteristics of dark-striped field mice. The analyses on L-lactate dehydrogenase, aspartate aminotransferase, and malate dehydrogenese revealed that one species of dark-striped field mice, called Apodemus agrarius, was inhabitated throughout a wide range of Korea. On the other hand, A. agrarius and ICR mice to analyze their survival rate and frequency of micronuclei in peripheral polychromatic erythrocytes after irradiation (0, 0.5, 1, 3, 5, 7, 9 Gy). The $LD_{50/30}$ of A. agrarius and ICR mice were approximately 5 Gy and 7Gy, respectively. The results of the study reveal that wild A. agrarius have a high potential as a biological monitoring system to determine the impact of radiation effect in areas such as those within the vicinity of nuclear power plants.

  • PDF

Multi-layers grid environment modeling for nuclear facilities: A virtual simulation-based exploration of dose assessment and dose optimization

  • Jia, Ming;Li, Mengkun;Mao, Ting;Yang, Ming
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.956-963
    • /
    • 2020
  • Dose optimization for Radioactive Occupational Personal (ROP) is an important subject in nuclear and radiation safety field. The geometric environment of a nuclear facility is complex and the work area is radioactive, so traditional navigation model and radioactive data field cannot form an effective environment model for dose assessment and dose optimization. The environment model directly affects dose assessment and indirectly affects dose optimization, this is an urgent problem needed to be solved. Therefore, this paper focuses on an environment model used for Dose Assessment and Dose Optimization (DA&DO). We designed a multi-layer radiation field coupling modeling method, and then explored the influence of the environment model to DA&DO by virtual simulation. Then, a simulation test is done, the multi-layer radiation field coupling model for nuclear facilities is demonstrated to be effective for dose assessment and dose optimization through the experiments and analysis.

Full spectrum estimation of helicopter background and cosmic gamma-ray contribution for airborne measurements

  • Lukas Kotik;Marcel Ohera
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1052-1060
    • /
    • 2023
  • The airborne radiation monitoring has been used in geophysics for more than forty years and now it also has its important role in emergency monitoring. The aircraft background and the cosmic gamma-rays contribute to the measured gamma spectrum on the aircraft board. This adverse effect should be eliminated before the data processing. The paper describes two semiparametric methods to estimate the full spectrum aircraft background and cosmic gamma-ray contribution from spectra measured at altitudes where terrestrial contribution is negligible. The methods only assume to know possible peak positions in spectra and their full width at half maximum, that can be easily obtained e.g. from terrestrial measurement. The methods were applied to real experimental data acquired on Mi-17 and Bell 412 helicopter boards. The IRIS airborne gamma-ray spectrometer, with 4×4 L NaI(Tl) crystals, produced by Pico Envirotec Inc., Canada, was used on helicopters' boards. To obtain valid estimate of the aircraft background and the cosmic contribution, the measurements over sea and large water areas were carried out. However, the satisfactory results over inland were also achieved comparing with those acquired over large water areas.

KAEROT/m2용 방사선 수명 측정모듈 개발 (The development of radiation lifetime measuring module for KAEROT/m2)

  • 이남호;김승호;김양모
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.793-796
    • /
    • 2003
  • The electronics of a mobile robot ill nuclear facilities is required to satisfied the reliability to sustain survival in its radiation environment. To know how much radiation the robot has been encountered to replace sensitive electronic parts, a dosimeter to measure total accumulated dose is necessary. Among many radiation dosimeters or detectors, semiconductor radiation sensors have advantages in terms of power requirements and their sires over conventional detectors. This paper describes the use of the radiation-induced threshold voltage change of a commercial power pMOSFET as an accumulated radiation dose monitoring mean and that of the photo-current of a commercial PIN Diode as a dose-rate measurement mean. Commercial p-type power MOSFETs and PIN Diodes were tested in a Co-60 gamma irradiation facility to see their capabilities as radiation sensors. We found an inexpensive commercial power pMOSFET that shows good linearity in their threshold voltage shift with radiation dose and a PIN diode that shows good linearity in its photo-current change with dose-rate. According to these findings, a radiation hardened hybrid electronic radiation dosimeter for nuclear robots has been developed for the first time. This small hybrid dosimeter has also an advantage in the point of view of reliability improvement by using a diversity concept.

  • PDF

Gamma-ray Exposure Rate Monitoring by Energy Spectra of NaI(Tl) Scintillation detectors

  • Lee, Mo Sung
    • Journal of Radiation Protection and Research
    • /
    • 제42권3호
    • /
    • pp.158-165
    • /
    • 2017
  • Background: Nuclear facilities in South Korea have generally adopted pressurized ion chambers to measure ambient gamma ray exposure rates for monitoring the impact of radiation on the surrounding environment. The rates assessed with pressurized ion chambers do not distinguish between natural and man-made radiation, so a further step is needed to identify the cause of abnormal variation. In contrast, using NaI(Tl) scintillation detectors to detect gamma energy rates can allow an immediate assessment of the cause of variation through an analysis of the energy spectra. Against this backdrop, this study was conducted to propose a more effective way to monitor ambient gamma exposure rates. Materials and Methods: The following methods were used to analyze gamma energy spectra measured from January to November 2016 with NaI detectors installed at the Korea Atomic Energy Research Institute (KAERI) dormitory and Hanbat University. 1) Correlations of the variation of rates measured at the two locations were determined. 2) The dates, intervals, duration, and weather conditions were identified when rates increased by $5nSv{\cdot}h^{-1}$ or more. 3) Differences in the NaI spectra on normal days and days where rates spiked by $5nSv{\cdot}h^{-1}$ or more were studied. 4) An algorithm was derived for automatically calculating the net variation of the rates. Results and Discussion: The rates measured at KAERI and Hanbat University, located 12 kilometers apart, did not show a strong correlation (coefficient of determination = 0.577). Time gaps between spikes in the rates and rainfall were factors that affected the correlation. The weather conditions on days where rates went up by $5nSv{\cdot}h^{-1}$ or more featured rainfall, snowfall, or overcast, as well as an increase in peaks of the gamma rays emitted from the radon decay products of $^{214}Pb$ and $^{214}Bi$ in the spectrum. This study assumed that $^{214}Pb$ and $^{214}Bi$ exist at a radioactive equilibrium, since both have relatively short half-lives of under 30 minutes. Provided that this assumption is true and that the gamma peaks of the 352 keV and 1,764 keV gamma rays emitted from the radionuclides have proportional count rates, no man-made radiation should be present between the two energy levels. This study proved that this assumption was true by demonstrating a linear correlation between the count rates of these two gamma peaks. In conclusion, if the count rates of these two peaks detected in the gamma energy spectrum at a certain time maintain the ratio measured at a normal time, such variation can be confirmed to be caused by natural radiation. Conclusion: This study confirmed that both $^{214}Pb$ and $^{214}Bi$ have relatively short half-lives of under 30 minutes, thereby existing in a radioactive equilibrium in the atmosphere. If the gamma peaks of the 352 keV and 1,764 keV gamma rays emitted from these radionuclides have proportional count rates, no man-made radiation should exist between the two energy levels.