• Title/Summary/Keyword: Radiation Monitoring

Search Result 531, Processing Time 0.029 seconds

협대역 고출력 전자기파에 의한 CMOS IC의 전기적 특성 분석 (An Electrical Properties Analysis of CMOS IC by Narrow-Band High-Power Electromagnetic Wave)

  • 박진욱;허창수;서창수;이성우
    • 한국전기전자재료학회논문지
    • /
    • 제30권9호
    • /
    • pp.535-540
    • /
    • 2017
  • The changes in the electrical characteristics of CMOS ICs due to coupling with a narrow-band electromagnetic wave were analyzed in this study. A magnetron (3 kW, 2.45 GHz) was used as the narrow-band electromagnetic source. The DUT was a CMOS logic IC and the gate output was in the ON state. The malfunction of the ICs was confirmed by monitoring the variation of the gate output voltage. It was observed that malfunction (self-reset) and destruction of the ICs occurred as the electric field increased. To confirm the variation of electrical characteristics of the ICs due to the narrow-band electromagnetic wave, the pin-to-pin resistances (Vcc-GND, Vcc-Input1, Input1-GND) and input capacitance of the ICs were measured. The pin-to-pin resistances and input capacitance of the ICs before exposure to the narrow-band electromagnetic waves were $8.57M{\Omega}$ (Vcc-GND), $14.14M{\Omega}$ (Vcc-Input1), $18.24M{\Omega}$ (Input1-GND), and 5 pF (input capacitance). The ICs exposed to narrow-band electromagnetic waves showed mostly similar values, but some error values were observed, such as $2.5{\Omega}$, $50M{\Omega}$, or 71 pF. This is attributed to the breakdown of the pn junction when latch-up in CMOS occurred. In order to confirm surface damage of the ICs, the epoxy molding compound was removed and then studied with an optical microscope. In general, there was severe deterioration in the PCB trace. It is considered that the current density of the trace increased due to the electromagnetic wave, resulting in the deterioration of the trace. The results of this study can be applied as basic data for the analysis of the effect of narrow-band high-power electromagnetic waves on ICs.

Characterization of New Avalanche Photodiode Arrays for Positron Emission Tomography

  • Song, Tae-Yong;Park, Yong;Chung, Yong-Hyun;Jung, Jin-Ho;Jeong, Myung-Hwan;Min, Byung-Jun;Hong, Key-Jo;Choe, Yearn-Seong;Lee, Kyung-Han
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2003년도 제27회 추계학술대회
    • /
    • pp.45-45
    • /
    • 2003
  • The aim of this study was the characterization and performance validation of new prototype avalanche photodiode (APD) arrays for positron emission tomography (PET). Two different APD array prototypes (noted A and B) developed by Radiation Monitoring Device (RMD) have been investigated. Principal characteristics of the two APD array were measured and compared. In order to characterize and evaluate the APD performance, capacitance, doping concentration, quantum efficiency, gain and dark current were measured. The doping concentration that shows the impurity distribution within an APD pixel as a function of depth was derived from the relationship between capacitance and bias voltage. Quantum efficiency was measured using a mercury vapor light source and a monochromator used to select a wavelength within the range of 300 to 700 nm. Quantum efficiency measurements were done at 500 V, for which the APD gain is equal to one. For the gain measurements, a pencil beam with 450 nm in wavelength was illuminating the center of each pixel. The APD dark currents were measured as a function of gain and bias. A linear fitting method was used to determine the value of surface and bulk leakage currents. Mean quantum efficiencies measured at 400 and 450 nm were 0.41 and 0.54, for array A, and 0.50 and 0.65 for array B. Mean gain at a bias voltage of 1700 V, was 617.6 for array A and 515.7 for type B. The values based on linear fitting were 0.08${\pm}$0.02 nA 38.40${\pm}$6.26 nA, 0.08${\pm}$0.0l nA 36.87${\pm}$5.19 nA, and 0.05${\pm}$0.00 nA, 21.80${\pm}$1.30 nA in bulk surface leakage current for array A and B respectively. Results of characterization demonstrate the importance of performance measurement validating the capability of APD array as the detector for PET imaging.

  • PDF

가강수량의 변화패턴과 기후인자와의 상관성 분석 (Relationship between temporal variability of TPW and climate variables)

  • 이다래;한경수;권채영;이경상;서민지;최성원;성노훈;이창석
    • 대한원격탐사학회지
    • /
    • 제32권3호
    • /
    • pp.331-337
    • /
    • 2016
  • 수증기는 지구 장파 복사에너지의 주요 흡수인자이다. 따라서 수증기량의 변화를 모니터링하고 변화의 원인을 세밀하게 조사하는 것은 필수적이다. 본 연구에서는 위성관측에 의해 얻어지는 Total Precipitable Water (TPW)자료를 사용하여 가강수량의 변화패턴을 모니터링 하고자 한다. 또한 기후인자들 중 수증기를 통해 생성되어 수증기의 변화패턴을 분석하는데 있어 중요한 역할을 하는 강수량과 다른 기후인자들에 비해 비교적 주기적으로 나타나는 엘니뇨를 통해 가강수량의 변화패턴과 기후인자와의 상관성분석을 실시하고자 한다. 본 연구에서는 TERRA/AQUA 위성의 Moderate-Resolution Imaging Spectroadiometer (MODIS) 센서를 통해 관측된 TPW의 장기적인 변화와 한반도 중남부지방의 강수량변화를 정량적으로 분석하고, 이들의 관계를 엘니뇨와 함께 비교하였다. 이를 통해 엘니뇨의 발생이 한반도 중남부지방의 강수량과 TPW의 변화에 영향을 주고 있는 지에 대해 조사하고자 한다. 먼저, 시계열 분석을 통해 TPW와 중남부지방 강수량의 변화를 정량적으로 산출하고 anomaly분석을 통해 이들의 변화를 세밀하게 분석한 결과 서로 반대의 양상을 띠는 부분이 발견되어 엘니뇨의 anomaly분석결과와 비교하였다. 그 결과 대부분 같은 양상을 띠고 있던 TPW와 강수량이 엘니뇨가 발생한 후 서로 반대의 양상을 띠는 것을 확인하였다.

원자력 시설 인근 수계에서 방사성 세슘 제거를 위한 일라이트 개질 연구 (Study on the Illite Modification for Removal of Radioactive Cesium in Water Environment near Nuclear Facilities)

  • 황정환;정성욱;신우식;한원식
    • 자원환경지질
    • /
    • 제51권2호
    • /
    • pp.113-120
    • /
    • 2018
  • 체르노빌과 후쿠시마와 같은 원자력 사고를 통해 환경으로 방출되는 방사성 세슘($^{137}Cs$)은 화학적 독성과 ${\gamma}$ 선 방출, 그리고 긴 반감기($t_{1/2}=30.2$ 년) 때문에 주된 감시대상 방사성 핵종 가운데 하나이다. 1족 알칼리 금속인 세슘은 점토광물에 잘 흡착되며, 특히 운모류 광물인 일라이트와 특이적 흡착을 하는 것으로 알려져 있다. 이는 일라이트의 frayed edge sites 에 세슘이 선택적 흡착을 일으키기 때문이며, 이러한 흡착 지점은 일라이트의 풍화 정도 및 결정도에 따라 달라질 수 있다. 따라서 본 연구는 인공 풍화 실험(pH=2.0 at $50^{\circ}C$)을 통해 일라이트 표면을 개질함으로써 세슘의 흡착 성능을 증가시키기 위해 수행되었다. 일라이트의 층간 양이온들(K, Ca)은 반응 1일 이내에 다량 용출되는 반면, 결정 구조를 구성하는 Si와 Al은 점진적으로 용출되었다. 또한 일라이트 시료의 결정도가 감소하여 인위적인 화학적 풍화가 발생하였음을 지시하였다. 저농도의 세슘과 흡착 실험을 진행한 결과, 흡착분배계수가 기존에 비해 약 2배 증가하였다. 이러한 결과는 비교적 저온에서 손쉽게 일라이트의 흡착 성능을 개선할 수 있음을 암시한다.

수하식 양식장용 실시간 해양환경 관측시스템 개발 및 동해 연안의 수온변동 특성 (Development of Real-time Oceanographic Information System for Long Line Hanging Aquaculture Farm and Temperature Variation in the Coastal Area of the East Sea)

  • 양준용;김임학;이준수;황재동;서영상;김대철
    • 한국환경과학회지
    • /
    • 제19권11호
    • /
    • pp.1397-1405
    • /
    • 2010
  • Mass mortalities of cultivated organisms have occurred frequently in Korean coastal waters causing enormous losses to cultivating industry. The preventive measures require continuous observation of farm environment and real-time provision of data. However, line hanging aquaculture farm are generally located far from monitoring buoys and has limitations on installation of heavy equipments. Substituting battery pack for solar panels and miniaturizing size of buoy, newly developed system can be attached to long line hanging aquaculture farm. This system could deliver measured data to users in real-time and contribute to damage mitigation and prevention from mass mortalities as well as finding their causes. The system was installed off Gijang and Yeongdeck in Korea, measuring and transmitting seawater temperature at the sea surface every 30 minutes. Short term variation of seawater temperature, less than one day, in Gijang from June to July 2009 corresponded tidal period of about 12 hours and long term variation seemed to be caused by cold water southeast coast of Korea, particularly northeast of Gijang. Seawater temperature differences between Gijang station and the other station that is about 500 m away from Gijang station were $1^{\circ}C$ on average. This fact indicates that it is need to be pay attention to use substitute data even if it is close to the station. Daily range of seawater temperature, one of crucial information to aquaculture, can be obtained from this system because temperature were measured every 30 minutes. Averages of daily range of temperature off Gijang and Yeongdeok during each observation periods were about $2.9^{\circ}C$ and $4.7^{\circ}C$ respectively. Dominant period of seawater temperature variation off Yeongdeok was one day with the lowest peak at 5 a.m. and the highest one at 5 p.m. generally, resulting from solar radiation.

대기환경영향평가를 위한 대구광역시 상인동 달비골의 봄철 기상관측 사례분석 (A Case Study on the Meteorological Observation in Spring for the Atmospheric Environment Impact Assessment at Sangin-dong Dalbi Valley, Daegu)

  • 박종길;정우식;황수진;윤일희;박길운;김신호;김석철
    • 한국환경과학회지
    • /
    • 제17권9호
    • /
    • pp.1053-1068
    • /
    • 2008
  • This study aims to produce fundamental database for Environment Impact Assessment by monitoring vertical structure of the atmosphere due to the mountain valley wind in spring season. For this, we observed surface and upper meteorological elements in Sangin-dong, Daegu using the rawinsonde and automatic weather system(AWS). In Sangin-dong, the weather condition was largely affected by mountains when compared to city center. The air temperature was low during the night time and day break, and similar to that of city center during the day time. Relative humidity also showed similar trend; high during the night time and day break and similar to that of city center during the day time. Solar radiation was higher than the city, and the daily maximum temperature was observed later than the city. The synoptic wind during the measurement period was west wind. But during the day time, the west wind was joined by the prevailing wind to become stronger than the night time. During the night time and daybreak, the impact of mountain wind lowered the overall temperature, showing strong geographical influence. The vertical structure of the atmosphere in Dalbi valley, Sangin-dong had a sharp change in air temperature, relative humidity, potential temperature and equivalent potential temperature when measured at the upper part of the mixing layer height. The mixing depth was formed at maximum 1896m above the ground, and in the night time, the inversion layer was formed by radiational cooling and cold mountain wind.

Assessing the Impact of Climate Change on Water Resources: Waimea Plains, New Zealand Case Example

  • Zemansky, Gil;Hong, Yoon-Seeok Timothy;Rose, Jennifer;Song, Sung-Ho;Thomas, Joseph
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.18-18
    • /
    • 2011
  • Climate change is impacting and will increasingly impact both the quantity and quality of the world's water resources in a variety of ways. In some areas warming climate results in increased rainfall, surface runoff, and groundwater recharge while in others there may be declines in all of these. Water quality is described by a number of variables. Some are directly impacted by climate change. Temperature is an obvious example. Notably, increased atmospheric concentrations of $CO_2$ triggering climate change increase the $CO_2$ dissolving into water. This has manifold consequences including decreased pH and increased alkalinity, with resultant increases in dissolved concentrations of the minerals in geologic materials contacted by such water. Climate change is also expected to increase the number and intensity of extreme climate events, with related hydrologic changes. A simple framework has been developed in New Zealand for assessing and predicting climate change impacts on water resources. Assessment is largely based on trend analysis of historic data using the non-parametric Mann-Kendall method. Trend analysis requires long-term, regular monitoring data for both climate and hydrologic variables. Data quality is of primary importance and data gaps must be avoided. Quantitative prediction of climate change impacts on the quantity of water resources can be accomplished by computer modelling. This requires the serial coupling of various models. For example, regional downscaling of results from a world-wide general circulation model (GCM) can be used to forecast temperatures and precipitation for various emissions scenarios in specific catchments. Mechanistic or artificial intelligence modelling can then be used with these inputs to simulate climate change impacts over time, such as changes in streamflow, groundwater-surface water interactions, and changes in groundwater levels. The Waimea Plains catchment in New Zealand was selected for a test application of these assessment and prediction methods. This catchment is predicted to undergo relatively minor impacts due to climate change. All available climate and hydrologic databases were obtained and analyzed. These included climate (temperature, precipitation, solar radiation and sunshine hours, evapotranspiration, humidity, and cloud cover) and hydrologic (streamflow and quality and groundwater levels and quality) records. Results varied but there were indications of atmospheric temperature increasing, rainfall decreasing, streamflow decreasing, and groundwater level decreasing trends. Artificial intelligence modelling was applied to predict water usage, rainfall recharge of groundwater, and upstream flow for two regionally downscaled climate change scenarios (A1B and A2). The AI methods used were multi-layer perceptron (MLP) with extended Kalman filtering (EKF), genetic programming (GP), and a dynamic neuro-fuzzy local modelling system (DNFLMS), respectively. These were then used as inputs to a mechanistic groundwater flow-surface water interaction model (MODFLOW). A DNFLMS was also used to simulate downstream flow and groundwater levels for comparison with MODFLOW outputs. MODFLOW and DNFLMS outputs were consistent. They indicated declines in streamflow on the order of 21 to 23% for MODFLOW and DNFLMS (A1B scenario), respectively, and 27% in both cases for the A2 scenario under severe drought conditions by 2058-2059, with little if any change in groundwater levels.

  • PDF

The Development of Water Quality Monitoring System and its Application Using Satellite Image Data

  • Jang, Dong-Ho;Jo, Gi-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.376-381
    • /
    • 1998
  • In this study, we was measured the radiance reflectance by using multi-spectral image of low resolution camera(LRC) which will be loaded in the multi-purpose satellite(KOMPSAT) to use the data in analyzing water pollution. Also we investigated the possibility of extraction of water quality factors in rivers and water body by using high resolution remote sensing data such as Airborne MSS. Especially, we tried to extract the environmental factors related with eutrophication, and also tried to develop the process technique and the radiance feature of reflectance related with eutrophication. The results were summarized as follows: First, the spectrum of sun's rays which reaches the surface of the earth was consistent with visible rays bands of 0.4${\mu}{\textrm}{m}$~0.7${\mu}{\textrm}{m}$ and about 50% of total quantity of radiation were there. And at around 0.5${\mu}{\textrm}{m}$ of green spectral band in visible rays bands, the spectrum was highest. Second, as a result of the radiance reflectance Chlorophyll-a represented high spectral reflectance mainly around 0.52${\mu}{\textrm}{m}$ of green spectral band, and suspended sediments and turbidity represented high spectral reflectance at 0.8${\mu}{\textrm}{m}$ and at 0.57${\mu}{\textrm}{m}$ each. Third, as a result of the water quality analysis by using Airborne MSS, Chlorophyll-a could have a distribution chart when carried out ratio of B3 and BS to B7. And Band 7 was useful for making the distribution chart of suspended sediments. And when we carried out PCA, suspended sediments and turbidity had distributions at PC 1 , PC 4 each similarly to ground truth data. Above results can be changed according to the change of season and time. Therefore, in order to analyze more exactly the environmental factors of water quality by using LRC data, we need to investigate constantly the ground truth data and the radiance feature of reflectance of water body. Afterward in this study, we will constantly analyze the radiance feature of the surface of water in water body by measuring the on-the-spot radiance reflectance and using low resolution satellite image(SeaWiFs). Besides, we will gather the data of water quality analysis in water body and analyze the pattern of water pollution.

  • PDF

낙동강의 환경요인이 조류군집 구성에 미치는 영향 (Effects of Environmental Factors on Algal Communities in the Nakdong River)

  • 유재정;이혜진;이경락;이인정;정강영;천세억
    • 한국물환경학회지
    • /
    • 제30권5호
    • /
    • pp.539-548
    • /
    • 2014
  • This study was carried out to investigate algal community structures and their correlations with environmental factors on five weir areas in the Nakdong River, South Korea. Water qualities, hydrodynamics, meteorological conditions and algal species compositions were observed in studied sites from May 2010 to Dec. 2013. Results showed that average total phosphorus concentration of 2013 was decreased by 52.4% in comparing with that from 2010 to 2011. Chlorophyll.a concentrations were positive significant with water temperature, pH, total phosphorus and total nitrogen, but is not significant with turbidity and suspended solids. Seasonal successions of algae were observed that Stephanodiscus sp. was dominant species with 65.3% of dominant frequency in studied site. Large algal biomass of the low temperature-adapted diatoms were observed during temperature range of $4{\sim}9^{\circ}C$, but large cyanobacterial biomass mainly during high temperature period ranged from $22^{\circ}C$ to $32^{\circ}C$. Microcystis sp. dominated during high water temperature in summer. The yearly correlations of algal biomass with accumulated solar radiations were not significant but seasonal correlations of summer from June to August were significant with correlation coefficient 0.33 (p<0.05). There were not significant correlations between turbidities and algal biomass. Turbidity and suspended solids concentrations were not significant correlation with algal biomass. According to the results, algal communities had strong correlation with water temperature and had partially correlation with solar radiation. For an effective management of algal blooms, water managers should survey with more long-term monitoring of various environmental factors and algal communities.

농경지 토양수분 추정 기술 개발을 위한 테스트 베드 데이터 세트 (A Dataset from a Test-bed to Develop Soil Moisture Estimation Technology for Upland Fields)

  • 강민석;조성식;김종호;손승원;최성원;박주한
    • 한국농림기상학회지
    • /
    • 제22권3호
    • /
    • pp.107-116
    • /
    • 2020
  • 본 데이터 논문에서는 관측기반 농경지 토양수분 추정 기술 개발을 위해 서산과 태안에 2019년 5월에 구축한 테스트 베드에서 2019년 한해동안 얻어진 자료들을 공유하고자 한다. 본 데이터는 기상청에서 운영 중인 자동농업기상관측망 중에 하나인 서산 관측소 주변 밭과 인근 태안의 밭에 구축한 테스트 베드에서 얻어진 다양한 생태수문기상학적인 변수들(토양수분, 증발산, 강수, 복사, 기온, 습도, 식생지수 등)을 포함한다. 해당 데이터의 주목할 만한 사항은 (1) 토양수분관측을 Frequency Domain Reflectometry 및 Time Domain Reflectometry 센서를 이용한 지점관측 뿐만 아니라 COSMIC-ray 중성자 센서로 넓은 공간대표성을 지닌 면적관측을 동시에 수행하여 토양수분의 공간 스케일링 기술 개발 및 평가에 활용될 수 있다는 점, (2) Smart Surface Sensing System을 이용해 작물생육을 함께 감시함으로써 어떻게 토양수분과 작물생육이 상호작용하는지에 대한 이해를 증진시키는데 활용될 수 있다는 점, (3) 에디 공분산 시스템을 이용해 증발산을 함께 실측함으로써 지면 물수지 전반에 대한 평가가 가능하다는 점이다.