• Title/Summary/Keyword: Radiation Intensity Control

Search Result 148, Processing Time 0.028 seconds

Locoregionally advanced nasopharyngeal carcinoma treated with intensity-modulated radiotherapy plus concurrent weekly cisplatin with or without neoadjuvant chemotherapy

  • Wee, Chan Woo;Keam, Bhumsuk;Heo, Dae Seog;Sung, Myung-Whun;Won, Tae-Bin;Wu, Hong-Gyun
    • Radiation Oncology Journal
    • /
    • v.33 no.2
    • /
    • pp.98-108
    • /
    • 2015
  • Purpose: The outcomes of locoregionally advanced nasopharyngeal carcinoma patients treated with concurrent chemoradiation (CCRT) using intensity-modulated radiotherapy (IMRT) with/without neoadjuvant chemotherapy (NCT) were evaluated. Materials and Methods: Eighty-three patients who underwent NCT followed by CCRT (49%) or CCRT with/without adjuvant chemotherapy (51%) were reviewed. To the gross tumor, 67.5 Gy was prescribed. Weekly cisplatin was used as concurrent chemotherapy. Results: With a median follow-up of 49.4 months, the 5-year local control, regional control, distant metastasis-free survival (DMFS), disease-free survival (DFS), and overall survival rates were 94.7%, 89.3%, 77.8%, 68.0%, and 81.8%, respectively. In multivariate analysis, the American Joint Committee on Cancer stage (p = 0.016) and N stage (p = 0.001) were negative factors for DMFS and DFS, respectively. Overall, NCT demonstrated no benefit and an increased risk of severe hematologic toxicity. However, compared to patients treated with CCRT alone, NCT showed potential of improving DMFS in stage IV patients. Conclusion: CCRT using IMRT resulted in excellent local control and survival outcome. Without evidence of survival benefit from phase III randomized trials, NCT should be carefully administered in locoregionally advanced nasopharyngeal carcinoma patients who are at high-risk of developing distant metastasis and radiotherapy-related mucositis. The results of ongoing trials are awaited.

Treatment outcome of anaplastic ependymoma under the age of 3 treated by intensity-modulated radiotherapy

  • Lee, Joongyo;Chung, Seung Yeun;Han, Jung Woo;Kim, Dong-Seok;Kim, Jina;Moon, Jin Young;Yoon, Hong In;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.38 no.1
    • /
    • pp.26-34
    • /
    • 2020
  • Purpose: Intensity-modulated radiotherapy (IMRT) allows for more precise treatment, reducing unwanted radiation to nearby structures. We investigated the safety and feasibility of IMRT for anaplastic ependymoma patients below 3 years of age. Materials and Methods: A total of 9 anaplastic ependymoma patients below 3 years of age, who received IMRT between October 2011 and December 2017 were retrospectively reviewed. The median equivalent dose in 2 Gy fractions was 52.0 Gy (range, 48.0 to 60.0 Gy). Treatment outcomes and neurologic morbidities were reviewed in detail. Results: The median patient age was 20.9 months (range, 12.1 to 31.2 months). All patients underwent surgery. The rates of 5-year overall survival, freedom from local recurrence, and progression-free survival were 40.6%, 53.3%, and 26.7%, respectively. Of the 9 patients, 5 experienced recurrences (3 had local recurrence, 1 had both local recurrence and cerebrospinal fluid [CSF] seeding, and 1 had CSF seeding alone). Five patients died because of disease progression. Assessment of neurologic morbidity revealed motor dysfunction in 3 patients, all of whom presented with hydrocephalus at initial diagnosis because of the location of the tumor and already had neurologic deficits before radiotherapy (RT). Conclusion: Neurologic morbidity is not caused by RT alone but may result from mass effects of the tumor and surgical sequelae. Administration of IMRT to anaplastic ependymoma patients below 3 years of age yielded encouraging local control and tolerable morbidities. High-precision modern RT such as IMRT can be considered for very young patients with anaplastic ependymoma.

Whole pelvic intensity-modulated radiotherapy for high-risk prostate cancer: a preliminary report

  • Joo, Ji Hyeon;Kim, Yeon Joo;Kim, Young Seok;Choi, Eun Kyung;Kim, Jong Hoon;Lee, Sang-Wook;Song, Si Yeol;Yoon, Sang Min;Kim, Su Ssan;Park, Jin-Hong;Jeong, Yuri;Ahn, Hanjong;Kim, Choung-Soo;Lee, Jae-Lyun;Ahn, Seung Do
    • Radiation Oncology Journal
    • /
    • v.31 no.4
    • /
    • pp.199-205
    • /
    • 2013
  • Purpose: To assess the clinical efficacy and toxicity of whole pelvic intensity-modulated radiotherapy (WP-IMRT) for high-risk prostate cancer. Materials and Methods: Patients with high-risk prostate cancer treated between 2008 and 2013 were reviewed. The study included patients who had undergone WP-IMRT with image guidance using electronic portal imaging devices and/or cone-beam computed tomography. The endorectal balloon was used in 93% of patients. Patients received either 46 Gy to the whole pelvis plus a boost of up to 76 Gy to the prostate in 2 Gy daily fractions, or 44 Gy to the whole pelvis plus a boost of up to 72.6 Gy to the prostate in 2.2 Gy fractions. Results: The study cohort included 70 patients, of whom 55 (78%) had a Gleason score of 8 to 10 and 50 (71%) had a prostate-specific antigen level > 20 ng/mL. The androgen deprivation therapy was combined in 62 patients. The biochemical failure-free survival rate was 86.7% at 2 years. Acute any grade gastrointestinal (GI) and genitourinary (GU) toxicity rates were 47% and 73%, respectively. The actuarial rate of late grade 2 or worse toxicity at 2 years was 12.9% for GI, and 5.7% for GU with no late grade 4 toxicity. Conclusion: WP-IMRT was well tolerated with no severe acute or late toxicities, resulting in at least similar biochemical control to that of the historic control group with a small field. The long-term efficacy and toxicity will be assessed in the future, and a prospective randomized trial is needed to verify these findings.

Dosimetric advantages and clinical outcomes of simultaneous integrated boost intensity-modulated radiotherapy for anal squamous cell carcinoma

  • Sakanaka, Katsuyuki;Itasaka, Satoshi;Ishida, Yuichi;Fujii, Kota;Horimatsu, Takahiro;Mizowaki, Takashi;Sakai, Yoshiharu;Hiraoka, Masahiro
    • Radiation Oncology Journal
    • /
    • v.35 no.4
    • /
    • pp.368-379
    • /
    • 2017
  • Purpose: The purpose of this study was to explore the dosimetric difference between simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) and three-dimensional conformal radiotherapy (3DCRT), and the clinical outcomes of anal squamous cell carcinoma (ASCC) chemoradiotherapy featuring SIB-IMRT. Materials and Methods: This study included ten patients with ASCC who underwent chemoradiotherapy using SIB-IMRT with 5-fluorouracil and mitomycin C. SIB-IMRT delivered 54 Gy to each primary tumor plus metastatic lymph nodes and 45 Gy to regional lymph nodes, in 30 fractions. Four patients received additional boosts to the primary tumors and metastatic lymph nodes; the median total dose was 54 Gy (range, 54 to 60 Gy). We additionally created 3DCRT plans following the Radiation Therapy Oncology Group 9811 protocol to allow dosimetric comparisons with SIB-IMRT. Locoregional control, overall survival, and toxicity were calculated for the clinical outcome evaluation. Results: Compared to 3DCRT, SIB-IMRT significantly reduced doses to the external genitalia, bladder, and intestine, delivering the doses to target and elective nodal region. At a median follow-up time of 46 months, 3-year locoregional control and overall survival rates were 88.9% and 100%, respectively. Acute toxicities were treated conservatively. All patients completed radiotherapy with brief interruptions (range, 0 to 2 days). No patient experienced ${\geq}grade$ 3 late toxicity during the follow-up period. Conclusion: The dosimetric advantages of SIB-IMRT appeared to reduce the toxicity of chemoradiotherapy for ASCC achieving high locoregional control in the extended period.

Hypofractionated radiotherapy for early glottic cancer: a retrospective interim analysis of a single institution

  • Lee, Jeong Won;Lee, Jeong Eun;Park, Junhee;Sohn, Jin Ho;Ahn, Dongbin
    • Radiation Oncology Journal
    • /
    • v.37 no.2
    • /
    • pp.82-90
    • /
    • 2019
  • Purpose: To evaluate the results of hypofractionated radiotherapy (HFX) for early glottic cancer. Materials and Methods: Eighty-five patients with cT1-2N0M0 squamous cell carcinoma of the glottis who had undergone HFX, performed using intensity-modulated radiotherapy (IMRT, n = 66) and three-dimensional conformal radiotherapy (3D CRT, n = 19) were analyzed. For all patients, radiotherapy was administered at 60.75 Gy in 27 fractions. Forty-three patients received a simultaneous integrated boost (SIB) of 2.3-2.5 Gy per tumor fraction. Results: The median follow-up duration was 29.9 months (range, 5.5 to 76.5 months). All patients achieved complete remission at a median of 50 days after the end of radiotherapy (range, 14 to 206 days). The 5-year rates for locoregional recurrence-free survival was 88.1%, and the 5-year overall survival rate was 86.2%. T2 stage was a prognostic factor for locoregional recurrence-free survival after radiotherapy (p = 0.002). SIB for the tumor did not affect disease control and survival (p = 0.191 and p = 0.387, respectively). No patients experienced acute or chronic toxicities of ≥grade 3. IMRT significantly decreased the dose administered to the carotid artery as opposed to 3D CRT (V35, p < 0.001; V50, p < 0.001). Conclusions: Patients treated with HFX achieved acceptable locoregional disease control rates and overall survival rates compared with previous HFX studies. A fraction size of 2.25 Gy provided good disease control regardless of SIB administration.

Development of a Novel Tracking System for Photovoltaic Efficiency in Low Level Radiation

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.405-411
    • /
    • 2010
  • This paper proposes a novel tracking algorithm considering radiation to improve the power of a photovoltaic (PV) tracking system. The sensor method used in a conventional PV plant is unable to track the sun's exact position when the intensity of solar radiation is low. It also has the problem of malfunctions in the tracking system due to rapid changes in the climate. The program method generates power loss due to unnecessary operation of the tracking system because it is not adapted to various weather conditions. This tracking system does not increase the power above that of a power of tracking system fixed at a specific position due to these problems. To reduce the power loss, this paper proposes a novel control algorithm for a tracking system and proves the validity of the proposed control algorithm through a comparison with the conventional PV tracking method.

Dose Planning of Forward Intensity Modulated Radiation Therapy for Nasopharyngeal Cancer using Compensating Filters (보상여과판을 이용한 비인강암의 전방위 강도변조 방사선치료계획)

  • Chu Sung Sil;Lee Sang-wook;Suh Chang Ok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2001
  • Purpose : To improve the local control of patients with nasopharyngeal cancer, we have implemented 3-D conformal radiotherapy and forward intensity modulated radiation therapy (IMRT) to used of compensating filters. Three dimension conformal radiotherapy with intensity modulation is a new modality for cancer treatments. We designed 3-D treatment planning with 3-D RTP (radiation treatment planning system) and evaluation dose distribution with tumor control probability (TCP) and normal tissue complication probability (NTCP). Material and Methods : We have developed a treatment plan consisting four intensity modulated photon fields that are delivered through the compensating tilters and block transmission for critical organs. We get a full size CT imaging including head and neck as 3 mm slices, and delineating PTV (planning target volume) and surrounding critical organs, and reconstructed 3D imaging on the computer windows. In the planning stage, the planner specifies the number of beams and their directions including non-coplanar, and the prescribed doses for the target volume and the permissible dose of normal organs and the overlap regions. We designed compensating filter according to tissue deficit and PTV volume shape also dose weighting for each field to obtain adequate dose distribution, and shielding blocks weighting for transmission. Therapeutic gains were evaluated by numerical equation of tumor control probability and normal tissue complication probability. The TCP and NTCP by DVH (dose volume histogram) were compared with the 3-D conformal radiotherapy and forward intensity modulated conformal radiotherapy by compensator and blocks weighting. Optimization for the weight distribution was peformed iteration with initial guess weight or the even weight distribution. The TCP and NTCP by DVH were compared with the 3-D conformal radiotherapy and intensitiy modulated conformal radiotherapy by compensator and blocks weighting. Results : Using a four field IMRT plan, we have customized dose distribution to conform and deliver sufficient dose to the PTV. In addition, in the overlap regions between the PTV and the normal organs (spinal cord, salivary grand, pituitary, optic nerves), the dose is kept within the tolerance of the respective organs. We evaluated to obtain sufficient TCP value and acceptable NTCP using compensating filters. Quality assurance checks show acceptable agreement between the planned and the implemented MLC(multi-leaf collimator). Conclusion : IMRT provides a powerful and efficient solution for complex planning problems where the surrounding normal tissues place severe constraints on the prescription dose. The intensity modulated fields can be efficaciously and accurately delivered using compensating filters.

  • PDF

Intensity-modulated radiotherapy for stage I glottic cancer: a short-term outcomes compared with three-dimensional conformal radiotherapy

  • Cho, Ick Joon;Chung, Woong-Ki;Lee, Joon Kyoo;Lee, Min-Cheol;Paek, Jayeong;Kim, Yong-Hyub;Jeong, Jae-Uk;Yoon, Mee Sun;Song, Ju-Young;Nam, Taek-Keun;Ahn, Sung-Ja;Lee, Dong Hoon;Yoon, Tae Mi;Lim, Sang-Chul
    • Radiation Oncology Journal
    • /
    • v.37 no.4
    • /
    • pp.271-278
    • /
    • 2019
  • Purpose: To investigate the differences in treatment outcomes between two radiation techniques, intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3DCRT). Materials and Methods: We retrospectively analyzed 160 (IMRT = 23, 3DCRT = 137) patients with stage I glottic cancer treated from January 2005 through December 2016. The IMRT was performed with TomoTherapy (16 patients), volumetric-modulated arc therapy (6 patients), and step-and-shoot technique (1 patient), respectively. The 3DCRT was performed with bilateral parallel opposing fields. The median follow-up duration was 30 months (range, 31 to 42 months) in the IMRT group and 65 months (range, 20 to 143 months) in the 3DCRT group. Results: The 5-year overall survival and 3-year local control rates of the 160 patients were 95.7% and 91.4%, respectively. There was no significant difference in 3-year local control rates between the IMRT and 3DCRT groups (94.4% vs. 91.0%; p = 0.587). Thirteen of 137 patients in the 3DCRT group had recurrences. In the IMRT group, one patient had a recurrence at the true vocal cord. Patients treated with IMRT had less grade 2 skin reaction than the 3DCRT group, but this had no statistical significance (4.3% vs. 21.2%; p = 0.080). Conclusion: IMRT had comparable outcomes with 3DCRT, and a trend of less acute skin reaction in stage I glottic cancer patients.

Supplementary Blue and Red Radiation at Sunrise and Sunset Influences Growth of Ageratum, African Marigold, and Salvia Plants

  • Heo, Jeong-Wook;Lee, Yong-Beom;Bang, Hea-Son;Hong, Seung-Gil;Kang, Kee-Kyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.382-389
    • /
    • 2011
  • BACKGROUND: Light-emitting diodes (LEDs) with lower electric cost and the specific wavelength have been considering as a novel light source for plant production in greenhouse conditions as well as in a closed culture system. Supplementary lighting for day-length extension was considered as light intensity, light quality, and/or photoperiod control on plant growth and development. Effects of supplementary blue or red LED radiation with lower light intensity on growth of Ageratum (Ageratum houstonianum Mill., cv. Blue Field), African marigold (Tagetes erecta L., cv. Orange Boy), and Salvia (Salvia splendens F. Sello ex Ruem & Schult., cv. Red Vista) were discussed during sunrise and sunset twilight in the experiment. METHODS AND RESULTS: Supplementary lighting by blue and red LEDs for 30 (Treatment B30; R30) or 60 (Treatment B60; R60) min. per day were established in greenhouse conditions. Photosynthetic photon flux for supplementary radiation was kept at $15{\mu}mol\;m^{-2}\;s^{-1}$ on the culture bed. Natural condition without supplementary light was considered as a control. The highest shoot and root dry weights were shown in African marigold exposed by red light for 60 min. per day. Supplementary blue and red lighting regardless of the radiation time significantly stimulated development of lateral branches in African marigold. Stem growth in Ageratum and Salvia seedlings was significantly promoted by red radiation as well as natural light. CONCLUSIONS: Extending of the radiation time at sunrise and sunset twilight using LEDs stimulated reproductive growth of flowering plant species. Different characteristics on growth under supplementary blue or red lighting conditions were also observed in the seedlings during supplementary radiation.

A Dual Radiation Monitoring System Ror Robot Working in High Radiation Field (고방사선장내 작업 로봇용 이중 방사선 감지 시스템)

  • Lee Nam-Ho;Cho Jai-Wan;Kim Seung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.556-558
    • /
    • 2005
  • The effect of high irradiation on inspection systems in a nuclear power plant can be severe, especially to electronic components such as control hoards. The effect may lead to a critical malfunction or trouble to a underwater robot for inspection and maintenance of nuclear reactor. However, if information on the total accumulated dose on the sensitive parts of the robot is available, a prediction of robot's behavior in radiation environments becomes possible. To know how much radiation the robot has encountered, a dosimeter to measure the total accumulated dose is necessary. This paper describes the development effort of a dual radiation monitoring system using a SiC diode as a dose-rate meter and a p-type power MOSFET as a dose meter. This attempt using two sensors which detect same radiation improves reliability and stability at high intensity radiation detection in nuclear facilities. It uses the concept of diversity and redundancy.