• Title/Summary/Keyword: Radiation Heat Transfer Coefficient

Search Result 69, Processing Time 0.026 seconds

A Study on the Radiation and Convection Component Separated from Surface Combined Heat Transfer Coefficient on Dynamic Heat Load Simulation (표면 열전달율의 복사.대류성분 분리와 비정상 열부하 계산에 관한 연구)

  • Kim, Young-Tag;Choi, Chang-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.3
    • /
    • pp.1-9
    • /
    • 2005
  • The purpose of this paper was to analyze the influence of radiation and convection component separated from surface heat combined transfer coefficient on dynamic Heat load simulation. In general, it was not considered the mutual radiation of walls that heat load simulation calculated by surface combined heat transfer coefficient. In order to solve this problem, we had developed new simulation program to calculate radiation heat transfer and convection heat transfer respectively, and verified the influence of radiation component with this new program, in indoor heat transfer process.

Establishing non-linear convective heat transfer coefficient

  • Cuculic, Marijana;Malic, Neira Toric;Kozar, Ivica;Tibljas, Aleksandra Deluka
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.107-119
    • /
    • 2022
  • The aim of the work presented in this paper is development of numerical model for prediction of temperature distribution in pavement according to the measured meteorological parameters, with introduction of non-linear heat transfer coefficient which is a function of temerature difference between the air and the pavement. Developed model calculates heat radiated from the pavement back in the air, which is an important part of the heat trasfer process in the open air surfaces. Temperature of the pavement surface, heat radiation together with many meteorological parameters were measured in series during two years in order to validate the model and calibrate model parameters. Special finite element method for temperature heat transfer towards the soil together with the time integration scheme are used to solve the governing equation. It is proved that non-linear heat transfer coefficient, which is a function of time and temperature difference between the air and the pavement, is required to decribe this phenomena. Proposed model includes heat tranfer coefficient callibration for specific climate region, through the iterative inverse procedure.

Radiation Heat-Transfer Coefficient of the Indoor Surface in Ondol Heating Space (온돌난방공간(溫突暖房空間)의 내표면(內表面) 복사열전달률(輻射熱傳達率)에 관(關)한 연구(硏究))

  • Sohn, J.Y.;Ahn, B.W.;Shin, Y.T.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.5
    • /
    • pp.598-606
    • /
    • 1988
  • The radiation heat-transfer coefficient is generally used to calculate radiant heat exchange of heating space. The coefficient is evenly adopted in most cases, but it is not correct in actual cases. The purpose of this paper is to grasp the changing aspect of radiation heat-transfer coefficient needed for heating load calculation of radiant heating space. Surface temperatures are measured in an Ondol space, and the coefficients are derived and examined. Gebhart's Absorption Factor Method is used for the calculations of the rates of instantaneous radiant exchange in the room. As the result, it is confirmed that the coefficients are variant according to surface temperatures, and proper coefficients are needed for each of conditions.

  • PDF

Measurement of The Thermal Transfer Coefficient Predicting Efficiency of The Heat Pipe (히트파이프 성능예측 열전달계수 측정)

  • Lim, Soo-Jung;Moon, Jong-Min;Rhee, Gwang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2039-2042
    • /
    • 2008
  • Recently, Electronic & Electrical Products have problems how to reduce heat in trend reducing size and increasing speed. heat pipes worked by latent heats can solve problems for effective and quiet electronic applications. Heat Pipes have to be suitably designed for the external conditions due to showing optimum performance. it has influence on efficiency of heat pipes to the exterior structure changed by length, bending angle, diameter. Designing heat pipes has depended on experience from trial and error. this method wasted too many resources, but can't guarantee efficiency. to prevent those wastes, this study aims at making the thermal transfer coefficient predicting efficiency. In this study, the thermal transfer coefficient has been made from experimental results that used variables - lengths between heat source and radiation, bending angles, diameters of heat pipes. variables become non-dimensional in modeling process for making the coefficient.

  • PDF

A Basic Study on Urban Radiation Heat Transfer (도시의 방사전열에 관한 기초 연구)

  • Kim, C.M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.35-43
    • /
    • 2002
  • This research makes that quantitative radiation property of an actual town ward is obtained in quest of the parameter with regard to a radiation heat transfer property and set up several town ward models that reproduced a solid form of a city along the attribute of the city. A regular trend possibility that is able to evaluate a radiation characteristics of a town ward quantitatively from a town ward guideline and confirmation that is produced about each parameter as a result of a numerical value simulation it obtained. This research shot a coefficient of Gebhart's emission absorption. sky radiation absorption rate direct solar radiation absorption rate the parameter with regard to a radiation heat transfer characteristics of a town ward in each town ward model and a volume rate of a town ward advances case study under regular such condition and shot the absorption rate, direct and others days and calculated an absorption rate and checked about the relation between a town ward and each radiation heat transfer property of a city.

Analysis on Surface Temperature Control of an Insulated Vertical Wall Under Thermal Radiation Environment (단열재가 부착된 수직벽 표면의 온도제어 해석)

  • Kang, Byung-Ha;Pi, Chang-Hun;Kim, Suk-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.323-329
    • /
    • 2012
  • In this study, a rational procedures for estimation of insulation thickness of a vertical wall for condensation control or personnel protection has been investigated. Design parameters are height of the wall, thermal conductivity, emissivity, and operating temperatures. The results indicated that the surface emissivity plays a very important role in the design of insulation for the purpose of surface temperature control, especially in natural convection situation. radiation heat transfer coefficients for some new insulation material surface, such as elastomers, estimated to be more than 90% of the total surface heat transfer coefficient.

Effects of surface radiation on the insulation for mechanical system (표면복사특성이 단열성능에 미치는 영향)

  • Oh, Dong-Eun;Park, Jong-Il;Lee, Min-Woo;Hong, Jin-Kwan;Kang, Byung-Ha;Kim, Suk-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1006-1011
    • /
    • 2006
  • In this study, a rational procedures for estimation of insulation thickness for condensation control or personnel protection has been investigated. Both horizontal pipe and vertical wall configuration are included. Design parameters are pipe diameter or, height of the wall, thermal conductivity, emissivity, and operating temperatures. The results Indicated that the surface emissivity plays a very important role in the design of insulation for the purpose of surface temperature control, especially in natural convection situation. radiation heat transfer coefficients for some new insulation material surface, such as elastomers, estimated to be more than 90% of the total surface heat transfer coefficient. Adequate revision of specifications or standards has been also suggested.

  • PDF

Analysis of a gas-particle direct-contact heat exchanger with two-phase radiation effect (복사효과를 고려한 기체-입자 직접접촉식 열교환기 해석)

  • Park, Jae-Hyeon;Baek, Seung-Uk;Gwan, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.542-550
    • /
    • 1998
  • A direct contact heat exchanger using particle-suspended gas as a heat transfer medium is analyzed with an extended emphasis on the radiation, i. e., considering the radiation by both gas and particles. While the Runge-Kutta method is used for a numerical analysis of the momentum and energy equations, the finite volume method is utilized to solve the radiative transfer equation. Present study shows a notable effect by the gas radiation in addition to the particle radiation, especially when changing the chamber length as well as the gas and particle mass flow rate. When the gas and particle mass flow rate is raised, the gas temperature in the particle heater still increases as the gas absorption coefficient increases, which is different from the results for the small scale heat exchanger.

2D Heat Transfer Model for the Prediction of Temperature of Slab in a Direct-Fired Reheating Furnace (가열로 내 슬랩의 온도 예측을 위한 2차원 열전달 모델)

  • Lee Dong-Eun;Park Hae-Doo;Kim Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.950-956
    • /
    • 2006
  • A mathematical heat transfer model for the prediction of heat flux on the slab surface and temperature distribution in the slab has been developed by considering the thermal radiation in the furnace and transient conduction governing equations in the slab, respectively. The furnace is modeled as radiating medium with spatially varying temperature and constant absorption coefficient. The slab is moved with constant speed through non-firing, charging, preheating, heating, and soaking zones in the furnace. Radiative heat flux which is calculated from the radiative heat exchange within the furnace modeled using the FVM by considering the effect of furnace wall, slab, and combustion gases is applied as the boundary condition of the transient conduction equation of the slab. Heat transfer characteristics and temperature behavior of the slab is investigated by changing such parameters as absorption coefficient and emissivity of the slab. Comparison with the experimental work shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace.

Analysis of heat-loss mechanisms with various gases associated with the surface emissivity of a metal containment vessel in a water-cooled small modular reactor

  • Geon Hyeong Lee;Jae Hyung Park;Beomjin Jeong;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3043-3066
    • /
    • 2024
  • In various small modular reactor (SMR) designs currently under development, the conventional concrete containment building has been replaced by a metal containment vessel (MCV). In these systems, the gap between the MCV and the reactor pressure vessel is filled with gas or vacuumed weakly, effectively suppressing conduction and convection heat transfer. However, thermal radiation remains the major mode of heat transfer during normal operation. The objective of this study was to investigate the heat-transfer mechanisms in integral pressurized water reactor (IPWR)-type SMRs under various gas-filled conditions using computational fluid dynamics. The use of thermal radiation shielding (TRS) with a much lower emissivity material than the MCV surface was also evaluated. The results showed that thermal radiation was always the dominant contributor to heat loss (48-97%), while the conjugated effects of the gas candidates on natural convection and thermal radiation varied depending on their thermal and radiative properties, including absorption coefficient. The TRS showed an excellent insulation performance, with a reduction in the total heat loss of 56-70% under the relatively low temperatures of the IPWR system, except for carbon dioxide (13%). Consequently, TRS can be utilized to enhance the thermal efficiency of SMR designs by suppressing the heat loss through the MCV.