• Title/Summary/Keyword: Radiation Field

Search Result 2,260, Processing Time 0.042 seconds

Photocatalytic Degradation of Fungicide Chlorothalonil by Mesoporous Titanium Oxo-Phosphate (Mesoporous Titanium Oxo-Phosphate에 의한 살균제 Chlorothalonil의 광분해)

  • Choi, Choong-Lyeal;Kim, Byung-Ha;Lee, Byung-Mook;Choi, Jyung;Rhee, In-Koo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.4
    • /
    • pp.284-289
    • /
    • 2003
  • Titanium mesoporous materials have received increasing attention as a new photocatalyst in the field for photocatalytic degradation of organic compounds. The photocatalytic degradation of chlorothalonil by mesoporous titanium oxo-phoswhate (Ti-MCM) was investigated in aqueous suspension for comparison with $TiO_2$, (Degussa, P25) using as an effective photocatalyst of organic pollutants. Mesoporous form of titanium Phosphate has been prepared by reaction of sulfuric acid and titanium isopropoxide in the presence or n-hexadecyltrimethylammonium bromide. The XRD patterns of Ti-MCM are hexagonal phases with d-spacings of 4.1 nm. Its adsorption isotherm for chlorothalonil reached at reaction equilibrium within 60 min under dark condition with 28% degradation efficiency. The degradation ratio of chlorothalonil after 9 hours under the UV radiation condition (254 nm) exhibited 100% by Ti-MCM and 88% by $TiO_2$. However, these degradation kinetics in static state showed a slow tendency compared to that of stirred state because of a low contact between titanium matrices and chlorothalonil. Also, degradation efficiency of chlorothalonil was increased with decreasing initial concentration and with increasing pH of solution. As results of this study, it was clear that mesoporous titanium oxo-phosphate with high surface area and crystallinity could be used to photo- catalytic degradation of various organic pollutants.

Effect of Meteorological Condition during Ripening on the Grain Shattering of Rice Plant (등숙기 기상조건이 벼알의 탈립성에 미치는 영향)

  • J. C. Shin;Y. W. Kwon;C. J. Chung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.3
    • /
    • pp.229-234
    • /
    • 1982
  • Environmental factors are known in general to influence much on the development of abscission layer and thereby on shedding of plant parts. The present study was carried out to determine the effect of meterological condition during ripening on the grain shatterability of rice plants at harvest. Different meteorological conditions were obtained by shifting transplanting timing of 40 days old rice seedlings 4 times with a 15 days-interval. Grain shatterability was measured as tensile strength of rice grains: it varied within a range of 214g. to 251g. in a practically non-shattering Japonica variety'Jinheung' and l27.5g. to 204g. in an easy shattering Indica \times Japonica progeny variety'Taeback'. In view of field loss of rice, the variation in tensile strength with time of transplanting and harvest did not matter in Jinheung, but was an important factor in Taeback. In Taeback the tensile strength was significantly correlated positively with mean, maximum and minimum air temperature and relative humidity during a certain period of grain ripening, especially during 30 days period before harvest, but diurnal range of air temperature showed a significant, negative correlation with it. The tensile strength seemed to be more closely related with min. air temperature than max. air temperature, and it was not significantly correlated with radiation amount during any period of pre-harvest. Meteorological effect on grain shatterability may vary with variety, but temperature regime during ripening appears to play major role among the meteorological factors in easy shattering and more thermophilic Indica \times Japonica varieties: lower the temperature, greater the shatterability.

  • PDF

Air Temperature Profile within a Partially Developed Paddy Rice Canopy (생육중기 벼 군락 내 기온의 연직구조)

  • Yoon Young-Kwan;Yun Jin-Il;Kim Kyu-Rang;Park Eun-Woo;Hwan Heon;Cho Seong-In
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.4
    • /
    • pp.204-208
    • /
    • 2000
  • Little information is available for the temporal variation in air temperature profile within rice canopies under development, while much works have been done for a fully developed canopy. Fine wire thermocouples of 0.003 mm diameter (chromel-constantan) were installed at 10 vertical heights by a 10 cm step in a paddy rice field to monitor the air temperatures over and within the developing rice canopy from one month after transplanting (June 29) to just before heading (August 24). According to a preliminary analysis of the data, we found neither the daytime temperature maximum nor the night time minimum at the active radiation surface (the canopy height with maximum leafages) during this period, which is a typical profile of a fully developed canopy. Air temperature within the canopy never exceeded that above the canopy at 1.5 m height during the daytime. Temporal march of the within-canopy profile seemed to be controlled mainly by the ambient temperature above the canopy and the water temperature beneath the canopy, and to some extent by the solar altitude, resulting in alternating isothermal and inversion structures.

  • PDF

Influence of Air Temperature during the Growing Period on Water Core Occurrence in 'Hongro' Apple Cultivar and the Mitigation Technique (사과 '홍로' 품종의 생육기 기온이 밀증상 발생에 미치는 영향과 경감기술 연구)

  • Park, Moo-Yong;Song, Yang-Yik;Han, Hyun-Hee;SaGong, Dong-Hoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.3
    • /
    • pp.100-110
    • /
    • 2009
  • 'Hongro' is one of the important mid-season apple cultivars bred in Korea. The recent occurrence of water core in Hongro and the consequent problems motivated this study. The objectives of our study were to investigate the influence of air temperature during the growing period on water core occurrence in Hongro and to provide methods to mitigate its impact. Based on our field experiments for three years, the results indicated that the occurrence of water core disorder was due to the prolonged exposure to high temperature ($T_a$) of >$30^{\circ}C$ during the ripening period. The rates of occurrence of water core disorder were higher in the fruit whose weight was more than 300g or those located outside the tree canopy and thus exposed to stronger solar radiation. In terms of mitigating the water core occurrence, the application of spraying $CaCl_2$ four times from late July to August was effective. Furthermore, between 1 and 15 August when the rate of occurrence was high with $T_a$ (from 3:00 to 5:00 p.m.) >$30^{\circ}C$, the micro-water sprinkling for 30 minutes starting at 6:00 p.m. with a supplementary spray conducted two hours after the first application drastically reduced the water core occurrence.

Modeling of Dual Head Gantry Radiotherapy System with Monte Carlo Simulation (듀얼 헤드 갠트리 방사선치료 시스템 설계를 위한 몬테칼로 시뮬레이션 연구)

  • Park, Seungwoo
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.627-632
    • /
    • 2017
  • In order to design a dual-head gantry radiotherapy system, the single head of LINAC was modeled using GATE as a preliminary study. The LINAC head was designed with VARIAN manufacturer's information. 6 MV photons were generated from the head and the photons w irradiated to a water phantom for beam evaluation. GATE simulation was segmented by two stages, the one was to generate X-ray spectrum and the other one was for irradiation X-ray to the water phantom. The quantitative results were described in Percentage depth dose and beam profile. Two field size conditions were employed as $5{\times}5$ and $10{\times}10cm^2$. After beam quality was verified, dual heads gantry radiotherapy system were simulated and they was compared to the single head of LINAC system in terms of dose deposition with in the phantom. The simulated LINAC head showed acceptable beam quality result for radiotherapy. The efficiency was calculated that deposited dose from dual heads was divided by the dose from single head. At all conditions, dual heads showed higher treatment efficiency. Efficiency was increased about 40 to 60%. Form the result, The dual head gantry system of new LINAC system will contribute to the practical radiotherapy of tumor and to reduce treatment time.

Spectroscopic Comparison of Photo-oxidation of Outside and Inside of Hair by UVB Irradiation (자외선B 조사에 의한 모발 외부와 내부의 광산화에 관한 분광학적 비교)

  • Ha, Byung-Jo
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.220-225
    • /
    • 2020
  • Hair is made of proteins containing various amino acids. Ultraviolet (UV) radiation is believed to be responsible for the most damaging effects of sunlight, and also plays an important role in hair aging. The purpose of this study was to investigate the changes in morphological and chemical structures after ultraviolet B (UVB) irradiation of human hair. The UVB-irradiated hair showed characteristic morphological and structural changes, compared to those of the normal hair. The result from a scanning electron microscope (SEM) equipped with an energy dispersive X-ray diffractometer (EDX) showed that the scale of UV-irradiated hair appeared to be rough and the amount of oxygen element was higher than that of the normal hair. Fluorescence and three dimensional (3D) topographical images were obtained by a confocal laser scanning microscope (CLSM). In 3D images, the green emission intensity of normal hair was much higher than that of fluorescing UVB-irradiated hair. The intensity of green emission reflects the intrinsic fluorescence of hair protein. Also, a fluorescent imaging method using fluorescamine reagent was used to identify the free amino groups resulting from a peptide bond breakage in UVB-irradiated hair. Strong blue fluorescence of UVB-irradiated hair, which indicates a very high level of amino groups, was observed by CLSM. Therefore, the fluorescamine as an extrinsic fluorescence could provide a useful tool to identify the peptide bond breakage in UVB-irradiated hair. Infrared image mapping was also employed to assess the cross-sections of normal and UVB-irradiated specimens to examine the oxidation of disulfide bonds. The degree of peak areas with strong absorbance for the disulfide mono-oxide was spread from the outside to the inside of hair. The spectroscopic techniques used alone, or in combination, launch new possibilities in the field of hair cosmetics.

The Characteristics of Groundwater and a Field Test for Thermal Insulation of Landfarming of Petroleum Contaminated Soil in Winter Season (유류오염지역의 지하수 수질특성 및 동절기 토양경작법의 온도보전을 위한 현장사례 연구)

  • Cho, Chang-Hwan;Kim, Soon-Heum;An, Jong-Ik;Lee, Yoon-Oh;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.5
    • /
    • pp.7-14
    • /
    • 2013
  • The objectives of this study were to identify the characteristics of groundwater in the petroleum contaminated site and to evaluate the applicability of house-type landfarm facilities heated with briquette stoves in winter season. The six monitoring wells were installed at the site where pH, dissolved oxygen, and temperature were all measured. Also groundwater contaminants, benzene, toluene, ethylbenzene, xylene and total petroleum hydrocarbon, were analyzed twice. House-type two landfarm facilities ($12m{\times}40m{\times}4.8m$) each installed with four briquette stoves were constructed. During four rounds treatment process, VOCs, moisture, temperature were monitored and soil contaminants were analyzed. The pH was 6.37 and considered subacid and DO was measured to be 3.12 mg/L. The temperature of groundwater was measured to be $9.48^{\circ}C$. The groundwater contaminants were detected only in the monitoring wells within the contaminated area or close to it showing that the groundwater contaminated area was similar to the soil contaminated area. During the landfarm process, 73.3% of VOCs concentration in interior gas was decreased and moisture was lowered from 17.7% to 13.4%. In the morning, at 8:00 am, the temperature was decreased showing soil ($5.5^{\circ}C$) > interior ($4.8^{\circ}C$) > exterior ($3.5^{\circ}C$). In the afternoon, at 2:00 pm, the temperature was soil ($8.6^{\circ}C$) < interior ($9.9^{\circ}C$) < exterior ($11.5^{\circ}C$) with solar radiation. The temperature difference between interior and exterior was $0.7^{\circ}C$ in the morning, but it was $1.6^{\circ}C$ in the afternoon. A total of 130 days were taken for four round landfarm processes. Each process was completed within 33 days showing 80% of cleanup efficiency ($1^{st}$ order dissipation rate(k) = 0.1771).

Effects of Compound Fertilizer Applications on the Growth and Nut-production of Chestnut (밤나무에 대(対)한 복합비료(複合肥料)의 시용효과(施用効果)에 관(関)하여)

  • Maeng, D.W.;Chung, I.K.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.4
    • /
    • pp.107-113
    • /
    • 1981
  • In order to investigate effects of fertilization on the yield of chestnut trees and to compare the compound fertilizer (CF) and Boron contained compound fertilizers (BCF) for chestnut trees developed by Chosun Fertilizer Inc. with single fertilizers (SF) at different fertilizing levels, a field experiment was conducted during the 1979 and 1980 growing periods. The results were summarized as follows: 1. The growth of chestnut trees was markedly improved as increasing the amount of fertilizers regardless of the SF, CF or BCF. 2. The number of strobiles increased as increased amount of fertilizers, and the ratio of dropped strobiles decreased by more than 90 percent by the BCF application while that decreased by 12 to 47 percents by the SF or CF applications. It implies that the boron application be necessary for increasing strobiles and reducing the ratio of dropped strobiles. 3. The yield increments by the SF or CF applications at the standard level were 80 percent and that by the BCF application at the same level was 202 percent and the highest yield increment was recorded as high as 302 percent by the BCF application at the doubled level in 1979. The yield response in 1980 was similar to that in 1979; however, the yields were lower than in 1979 due to the abnormal weather conditions such as low temperature and low solar radiation during summer except BCF applicated treatments where the yields were outstandingly increased. 4. The BCF developed proved as a recommendable compound fertilizer for chestnut trees.

  • PDF

Microstructure evolution and effect on deuterium retention in oxide dispersion strengthened tungsten during He+ irradiation

  • Ding, Xiao-Yu;Xu, Qiu;Zhu, Xiao-yong;Luo, Lai-Ma;Huang, Jian-Jun;Yu, Bin;Gao, Xiang;Li, Jian-Gang;Wu, Yu-Cheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2860-2866
    • /
    • 2020
  • Oxide dispersion-strengthened materials W-1wt%Pr2O3 and W-1wt%La2O3 were synthesized by wet chemical method and spark plasma sintering. The field emission scanning electron microscopy (FE-SEM) analysis, XRD and Vickers microhardness measurements were conducted to characterize the samples. The irradiations were carried out with a 5 keV helium ion beam to fluences up to 5.0 × 1021 ions/m2 under 600 ℃ using the low-energy ion irradiation system. Transmission electron microscopy (TEM) study was performed to investigate the microstructural evolution in W-1wt%Pr2O3 and W-1wt%La2O3. At 1.0 × 1020 He+/m2, the average loops size of the W-1wt%Pr2O3 was 4.3 nm, much lower than W-1wt% La2O3 of 8.5 nm. However, helium bubbles were not observed throughout in both doped W materials. The effects of pre-irradiation with 1.0 × 1021 He+/m2 on trapping of injected deuterium in doped W was studied by thermal desorption spectrometry (TDS) technique using quadrupole mass spectrometer. Compared with the samples without He+ pre-irradiation, deuterium (D) retention of doped W materials increased after He+ irradiation, whose retention was unsaturated at the damage level of 1.0 × 1022D2+/m2. The present results implied that irradiation effect of He+ ions must be taken into account to evaluate the deuterium retention in fusion material applications.

Development of Performance Analysis 80 kW High-efficiency Permanent Magnet Generator for Radar System Power Supply (레이더 체계 전원공급용 80 kW급 고효율 영구자석형 발전기 개발 및 성능분석)

  • Ryu, Ji-Ho;Cho, Chong-Hyeon;Chong, Min-Kil;Park, Sung-Jin;Kang, Kwang-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.60-71
    • /
    • 2019
  • Electrical power supply is needed to operate the radar system in the field. In addition, it should not cause performance deterioration under the environmental factors due to characteristics of military equipment, and should not cause malfunction due to electromagnetic waves generated in radar, and then should not cause malfunction in radar equipment. Therefore, By applying a permanent magnet to the rotor of the generator, light weighting and high efficiency of generator were achieved. As a result, electrical performance test of the generator, the rated output power was 80.8 kW, the maximum output power was 88.1 kW, and the output power efficiency was 98.1 % under the full load condition. When the load capacity of the generator was changed from no load to full load, the maximum voltage variation was 3.6 % and the frequency variation was 0.3 %. As a result of the transient response test for measuring the output power of the generator according to the load characteristics change, the maximum voltage variation of 7.9 %, frequency variation of 0.5 % were confirmed, and the transient response time was 2.1 seconds. Environmental tests were conducted in accordance with MIL-STD-810G and MIL-STD-461F to evaluate the operability of the generator groups. Normal operation of radar system generator group was confirmed under high temperature and low temperature environment conditions. Electromagnetic tests were conducted to check if electromagnetic wave generated from both radar system and generator group in operation caused any performance deterioration to each other. As a result, it was confirmed that the performance deterioration due to electromagnetic wave inflow, radiation, and conduction did not occur. It is expected that it should be possible to provide high efficiency power supply and stable power supply by applying to various military system as well as radar system.