• Title/Summary/Keyword: Radiation Emergency

Search Result 224, Processing Time 0.027 seconds

The Japan Health Physics Society Guideline on Dose Monitoring for the Lens of the Eye

  • Yokoyama, Sumi;Tsujimura, Norio;Hashimoto, Makoto;Yoshitomi, Hiroshi;Kato, Masahiro;Kurosawa, Tadahiro;Tatsuzaki, Hideo;Sekiguchi, Hiroshi;Koguchi, Yasuhiro;Ono, Koji;Akiyoshi, Masahumi;Kunugita, Naoki;Natsuhori, Masahiro;Natsume, Yoshinori;Nabatame, Kuniaki;Kawashima, Tsunenori;Takagi, Shunji;Ohno, Kazuko;Iwai, Satoshi
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Background: In Japan, new regulations that revise the dose limit for the lens of the eye (hereafter the lens), operational quantities, and measurement positions for the lens dose were enforced in April 2021. Based on the international safety standards, national guidelines, the results of the Radiation Safety Research Promotion Fund of the Nuclear Regulation Authority, and other studies, the Working Group of Radiation Protection Standardization Committee, the Japan Health Physics Society (JHPS) developed a guideline for radiation dose monitoring for the lens. Materials and Methods: The Working Group of the JHPS discussed the criteria of non-uniform exposure and the management criteria set not to exceed the dose limit for the lens. Results and Discussion: In July 2020, the JHPS guideline was published. The guideline consists of three parts: main text, explanations, and 26 examples. In the questions, the corresponding answers were prepared, and specific examples were provided to enable similar cases to be addressed. Conclusion: With the development of the guideline on radiation dose monitoring of the lens, radiation managers and workers will be able to smoothly comply with revised regulations and optimize radiation protection.

Population Dose Assessment for Radiation Emergency in Complex Terrain (복잡 지형에서의 주민선량 계산)

  • Yoon, Yea-Chang;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.12 no.2
    • /
    • pp.28-36
    • /
    • 1987
  • Gaussian plume model is used to assess environmental dose for abnormal radioactive release in nuclear facility, but there has a problem to use it for complex terrain. In this report, MATTEW and WIND04 Codes which had been verified were used to calculate wind field in the complex terrain. Under the base of these codes principle, wind fields were obtained from the calculation of the finite difference approximation for advection-diffusion equations which satisfy the mass-conservative law. Particle concentrations and external doses were calculated by using PIC model which approximate the particle to radioactive cloud, and atmospheric diffusion of the particles from the random walk method. The results show that the adjusted wind fields and the distributions of the exposure dose vary with the topography of the complex terrain.

  • PDF

Development and strengthening of the nuclear and radiation safety infrastructure for nuclear power program of Bangladesh

  • Islam, Md. Shafiqul;Faisal, Shafiqul Islam;Khan, Sadia
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1705-1716
    • /
    • 2021
  • Bangladesh, as a newcomer country, is expecting to start her nuclear power journey by 2022. Due to evident reasons, newcomer nuclear countries face several key challenges concerning the development of national nuclear safety infrastructure. The paper investigates the status of the 7 key safety infrastructure issues out of the 19 and readiness of the supportive organizations, laboratories, and workforces following the International Atomic energy Agency's status evaluation guide at milestone 3 and foreign countries' practice. Much progress has been achieved at phase 3 regarding the establishments of a few Acts, a regulator, and an operator. However, comprehensive regulatory frameworks, skilled workforces, establishments of a few supportive organizations, and laboratories for managing environmental radioactivity, radiological accidents, and radioactive wastes are yet to ready. Several suggestions are made for establishing and expediting radiation monitoring laboratories, a radiological emergency management center, a radioactive waste management company, and technical support organizations for the safety infrastructure. To avoid perceived risks, policymakers and competent authorities need to emphasize creating an optimized safety infrastructure before commissioning and operating the 1st nuclear power plant safely, securely, and cost-sustainably.

Improvement Plan for Prevention Regulations to Improve Hazardous Material Safety Management

  • Seongju Oh;Jaewook Lee;Hasung Kong
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.346-357
    • /
    • 2023
  • The purpose of this study is to suggest improvement plans for prevention regulations by reflecting the toxicity, fire and explosion effects of hazardous materials factories and surrounding areas using an off-site consequence assessment program. Regarding the effects of the hydrogen cyanide leak accident, which is the 1st petroleum of the 4th class flammable liquid, Areal Locations of Hazardous Atmospheres (ALOHA) program was used to compare and analyze the extent of damage effects for toxicity, overpressure, and radiation. As a result, the toxicity was analyzed to exceed 5km in the area with Acute exposure guideline level (AEGL)-2 concentration or higher, the overpressure was 103m in the range of 1 psi or more, and the radiant heat was analyzed to be 724m in the range of 2kw/m2 or more. Toxicity and radiation affected the area outside the hazardous material storage area, but the overpressure was limited to the inside of the hazardous material storage area. Therefore, we propose to improve the safety management of hazardous materials by conducting a risk assessment for hazardous materials and reflecting the results in internal and external emergency response plans to prepare prevention regulations.

Multi-objective path planning for mobile robot in nuclear accident environment based on improved ant colony optimization with modified A*

  • De Zhang;Run Luo;Ye-bo Yin;Shu-liang Zou
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1838-1854
    • /
    • 2023
  • This paper presents a hybrid algorithm to solve the multi-objective path planning (MOPP) problem for mobile robots in a static nuclear accident environment. The proposed algorithm mimics a real nuclear accident site by modeling the environment with a two-layer cost grid map based on geometric modeling and Monte Carlo calculations. The proposed algorithm consists of two steps. The first step optimizes a path by the hybridization of improved ant colony optimization algorithm-modified A* (IACO-A*) that minimizes path length, cumulative radiation dose and energy consumption. The second module is the high radiation dose rate avoidance strategy integrated with the IACO-A* algorithm, which will work when the mobile robots sense the lethal radiation dose rate, avoiding radioactive sources with high dose levels. Simulations have been performed under environments of different complexity to evaluate the efficiency of the proposed algorithm, and the results show that IACO-A* has better path quality than ACO and IACO. In addition, a study comparing the proposed IACO-A* algorithm and recent path planning (PP) methods in three scenarios has been performed. The simulation results show that the proposed IACO-A* IACO-A* algorithm is obviously superior in terms of stability and minimization the total cost of MOPP.

Real-time wireless marine radioactivity monitoring system using a SiPM-based mobile gamma spectroscopy mounted on an unmanned marine vehicle

  • Min Sun Lee;Soo Mee Kim;Mee Jang;Hyemi Cha;Jung-Min Seo;Seungjae Baek;Jong-Myoung Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2158-2165
    • /
    • 2023
  • Marine radioactivity monitoring is critical for taking immediate action in case of unexpected nuclear accidents at nuclear facilities located near coastal areas. Especially when the level of contamination is not predictable, mobile monitoring systems will be useful for wide-area ocean radiation survey and for determination of the level of radioactivity. Here, we used a silicon photomultiplier and a high-efficiency GAGG crystal to fabricate a compact, battery-powered gamma spectroscopy that can be used in an ocean environment. The developed spectroscopy has compact dimensions of 6.5 × 6.5× 8 cm3 and weighs 560 g. We used LoRa, a low-power wireless protocol for communication. Successful data transmission was achieved within 1.4 m water depth. The developed gamma spectroscopy was able to detect radioactivity from a 137Cs point source (3.7 kBq) at a distance of 20 cm in water. Moreover, we demonstrated an unmanned radioactivity monitoring system in a real sea by combining unmanned surface vehicle with the developed gamma spectroscopy. A hidden 137Cs source (3.07 MBq) was detected by the unmanned system at a distance of 3 m. After successfully testing the developed mobile spectroscopy in an ocean environment, we believe that our proposed system will be an effective solution for mobile real-time marine radioactivity monitoring.

A study on Protector Performance Evaluation According to X-ray Scattering Distribution of Portable Radiation System (이동형 방사선 발생장치 차폐물 설치에 관한 연구)

  • Kim, Hyong-Gyun;Sung, Dong-Keon;Cho, Kyong-Mi;Kim, Sang-Beom;Kim, Jae-Young;Choi, Jun-Ho
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.2
    • /
    • pp.85-92
    • /
    • 2009
  • This study, "The study about performance evaluations of mobile cover for X-ray's diffusion and distribution in mobile radiation" is based on the rules of mobile defense apparatus for radiation producer in 2006. To use the mobile cover for X-ray for diagnosis has been compulsory in common wards except operation rooms, emergency rooms and intensive care units. we have confirmed the effect in arbitrary shielding material after Qualitiy Control was carried out for accuracy in an experiment of mobile photographing equipment. The performance evaluation was conducted with the fabrics of selenium, 0.2 mmPb, 0.1 mmPb and aluminiums. Considering the result, we choosed 0.1 mmPb and attached cover to mobile photographing equipment. We have finished making the cover after drew up the draft to attach cover to mobile photographing equipment through the modeling and the structural analysis. the process of the study is that we assembled the manufactured structures and carried out the practical experiment to take the photograph after attaching the fabric of 0.1 mmPb to mobile photographing equipment. It is need of additional thesises hereafter that we compare the result between the part to improve for safety besides convenience in photographic experiment about clinical radiation and the effect of covering the diffusion in condition attached the cover.

  • PDF

Measurements of Neutron Activation and Dose Rate Induced by High-Energy Medical Linear Accelerator

  • Kwon, Na Hye;Jang, Young Jae;Kim, Jinsung;Kim, Kum Bae;Yoo, Jaeryong;Ahn, So Hyun;Kim, Dong Wook;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.145-152
    • /
    • 2021
  • Purpose: During the treatments of cancer patients with a linear accelerator (LINAC) using photon beams with energies ≥8 MV, the components inside the LINAC head get activated through the interaction of photonuclear reaction (γ, n) and neutron capture (n, γ). We used spectroscopy and measured the dose rate for the LINAC in operation after the treatment ended. Methods: We performed spectroscopy and dose rate measurements for three units of LINACs with a portable high-purity Germanium (HPGe) detector and a survey meter. The spectra were obtained after the beams were turned off. Spectroscopy was conducted for 3,600 seconds, and the dose rate was measured three times. We identified the radionuclides for each LINAC. Results: According to gamma spectroscopy results, most of the nuclides were short-lived radionuclides with half-lives of 100 days, except for 60Co, 65Zn, and 181W nuclides. The dose rate for three LINACs obtained immediately in front of the crosshair was in the range of 0.113 to 0.129 µSv/h. The maximum and minimum dose rates measured on weekends were 0.097 µSv/h and 0.092 µSv/h, respectively. Compared with the differences in weekday data, there was no significant difference between the data measured on Saturday and Sunday. Conclusions: Most of the detected radionuclides had half-lives <100 days, and the dose rate decreased rapidly. For equipment that primarily used energies ≤10 MV, when the equipment was transferred after at least 10 minutes after shutting it down, it is expected that there will be little effect on the workers' exposure.

The Study on Design of Semiconductor Detector for Checking the Position of a Radioactive Source in an NDT (비파괴검사 분야에서 방사선원의 위치 확인을 위한 반도체 검출기 설계에 관한 연구)

  • Kim, Kyo-Tae;Kim, Joo-Hee;Han, Moo-Jae;Heo, Ye-Ji;Ahn, Ki-Jung;Park, Sung-Kwang
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.171-175
    • /
    • 2017
  • In the non-destructive inspection field, we invest a lot of time and resources in developing the radiation source system to ensure the safety of the workers. However, the probability of accidents is still high. In order to prevent potential radiation accidents in advance, it is necessary to directly verify the position of the radiation source, but the research is still insufficient. In this study, we developed a monitoring system that can detect the position of the radiation source in the source guide tube in the gamma-ray irradiator. The characteristics of the radiation detector are estimated by monte carlo simulation. As a result, the radiation detector for Ir-192 gamma-ray energy was analyzed to have secondary electron equilibrium at $150{\mu}m$ regardless of the semiconductor material. Also, it is expected that the gamma ray response characteristic is the best in $HgI_2$. These results are expected to be used as a basis for determining the optimal thickness of the radiation detector located in the detection part of the future monitoring system. In addition, when developing a monitoring system based on this, radiation workers can easily recognize the danger and secure safety, as well as prevent and preemptively respond to potential radiation accidents.

Emergency Cranial Irradiation Effects in Adult Leukemia with Extremely High Leukocytosis (극심한 백혈구 증다증이 동반된 성인 백혈병에 있어서 응급 두개부 방사선 조사의 효과)

  • Park Seoung-Ho;Cho Moon-June;Kim Samyong
    • Radiation Oncology Journal
    • /
    • v.10 no.2
    • /
    • pp.255-259
    • /
    • 1992
  • We have treated adult acute leukemia 64 patients between January 1990 and October 1991 at the Chungnam National University Hospital. They were examined for the impact of presenting WBC count on the initial course and from them we have chosen twenty patients whose leukocyte count is over one hundred thousands per cubic milimeter, We divided the twenty patients into 4 groups on the base of treatment modalities: conservative therapy only, chemotherapy only, cranial irradiation only, and chemotherapy with cranial irradiation. Early sudden death rate is lower in cranial irradiation with/without chemotherapy groups than the conservative only or chemotherapy only patients. Also the remission rate is high in cranial irradiation with chemotherapy patients. Therefore we suggest that the rapid intervention of cranial irradiation in adult acute leukemia could be helpful in reducing the early sudden death rate and perhaps in increasing the remission rate.

  • PDF