• Title/Summary/Keyword: Radiation Dose to Worker

Search Result 97, Processing Time 0.027 seconds

A Study on Exposure Dose from Injection Work and Elution Work for Radiation Workers and Frequent Workers in Nuclear Medicine (핵의학과 주사와 분배업무 작업종사자 및 수시출입자 피폭선량연구)

  • Ju, Yong-Jin;Dong, Kyung-Rae;Choi, Eun-Jin;Kwak, Jong-Gil;Ryu, Jae-Kwang;Chung, Woon-Kwan
    • Journal of Radiation Industry
    • /
    • v.11 no.1
    • /
    • pp.47-54
    • /
    • 2017
  • Compared to other occupations, there is a greater risk of exposure to radiation due to the use of radioisotopes in nuclear medicine for diagnostic evaluations and therapy. To consider ways to reduce exposure dose for those in nuclear medicine involved in injection work and elution work among radiation workers as well as for sanitation workers and trainees among frequent workers an investigation into exposure dose and situational analysis from changes in yearly exposure dose evaluations, changes in work environment and changes in forms of inspection were conducted. Exposure dose measurements were taken by using EPD MK2 worn during working hours for one injection worker, one elution worker, two sanitation workers, and one trainee at a general hospital in the Seoul area for three days from July 18th to 20th 2016. Radiation from radioisotopes which are a part of nuclear medicine can significantly affect not only radiation workers who deal with radioisotopes directly but also frequency works as well. According to this study the annual dose limit for elution workers and injection workers were considered safe as the amount of exposure was not large enough to have a significant effect. The limits of this study consist in the duration of this study and the quantity of participants. Also there was a limitation of the measurement device involving accumulated exposure, where the EPD MK2 cannot check the changes in exposure according to a particular activity.

Organ dose reconstruction for the radiation epidemiological study of Korean radiation workers: The first dose evaluation for the Korean Radiation Worker Study (KRWS)

  • Tae-Eun Kwon;Areum Jeong;Wi-Ho Ha;Dalnim Lee;Songwon Seo;Junik Cho;Euidam Kim;Yoonsun Chung;Sunhoo Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.725-733
    • /
    • 2023
  • The Korea Institute of Radiological and Medical Sciences has started a radiation epidemiological study, titled "Korean Radiation Worker Study," to evaluate the health effects of occupational exposure to radiation. As a part of this study, we investigated the methodologies and results of reconstructing organ-specific absorbed doses based on personal dose equivalent, Hp(10), reported from 1984 to 2019 for 20,605 Korean radiation workers. For the organ dose reconstruction, representative exposure scenarios (i.e., radiation energy and exposure geometry) were first determined according to occupational groups, and dose coefficients for converting Hp(10) to organ absorbed doses were then appropriately taken based on the exposure scenarios. Individual annual doses and individual cumulative doses were reconstructed for 27 organs, and the highest values were observed in the thyroid doses (on average 0.77 mGy/y and 10.47 mGy, respectively). Mean values of individual cumulative absorbed doses for the red bone marrow, colon, and lungs were 7.83, 8.78, and 8.43 mSv, respectively. Most of the organ doses were maximum for industrial radiographers, followed by nuclear power plant workers, medical workers, and other facility workers. The organ dose database established in this study will be utilized for organ-specific risk estimation in the Korean Radiation Worker Study.

A study on Classification of Temporarily Access Group about Sanitation Workers in Nuclear Medicine Department (핵의학과 환경미화원의 일시 출입자 분류에 대한 고찰)

  • Yoo, Jae-Sook;Jang, Jeong-Chan;Kim, Ho-Seong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.50-56
    • /
    • 2012
  • Purpose: Those who access to the nuclear medicine department are classified as radiation workers, temporarily access group, and occasional access group as defined by the atomic energy law. The radiation workers and temporarily access people wear a personal radiation dosimeter for checking their own radiation absorbed dose periodically. However, because of the sanitation workers, classified as temporarily access group, who are working in the nuclear medicine department are moved in a cycle with other departments and their works are changeful, it is hard to control their radiation absorbed dose. Thus, this study is going to examine the state of the sanitation worker's radiation absorbed dose, and then make sure whether they are classified as temporarily access group or not. Materials and methods: In the first instance, the first sanitation worker who works in vitro laboratory and PET room and the second sanitation worker who works in gamma camera rooms (invivo room) wore radiation dosimeter-OSL(Optically Stimulated Luminescence)- to measure their own radiation absorbed dose during work time from May to June 2011. Secondly, this study was taken place 5 places in gamma camera rooms, 2 places in PET bed room, operating room, waiting room and cyclotron room in PET and 4 places in vitro laboratory. And then to measure the radiation space dose rate, it is measured 10 times each of places as sanitation worker's work flow by using radiation survey meter. Results: The radiation absorbed dose on OSL of the first c who works in vitro laboratory and PET room and the second one who works in gamma camera rooms are 0.04, 0.02 mSv per month respectively. That means the estimated annual radiation absorbed doses are less than 1mSv as 0.48, 0.24 mSv/yr respectively. The radiation space dose rates as sanitation worker's work flow using survey meter are 0.0037, 0.0019 mSv/day, so the estimated annual radiation absorbed dose are 0.93, 0.47 mSv/yr respectively. The weighted exposure dose of first sanitation worker of each places are 1.62% in cyclotron room, 3.88% in waiting room, 2.39% in operating room, 81.01% in bed room of PET and 11.01% in vitro laboratory. The weighted exposure dose of second sanitation worker of each places are 45.22% in radiopharmaceutical laboratory, gamma 30.64% in camera rooms, 15.65% in waiting room, 8.49% in reading room. Conclusion: The annual radiation absorbed doses on OSL of both sanitation workers are less than 1 mSv per year and the annual radiation absorbed doses by using survey meter are less than 1mSv either, but close up to 1 mSv. Thus, to clarify whether the sanitation workers are temporarily access group or not, and to be lessen their s radiation absorbed dose, they should be educated about management of radiation and modified their work flow or work time appropriately, their radiation absorbed dose would be lessen certainly.

  • PDF

Quantitative Evaluation of Radiation Dose Rates for Depleted Uranium in PRIDE Facility

  • Cho, Il Je;Sim, Jee Hyung;Kim, Yong Soo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.378-383
    • /
    • 2016
  • Background: Radiation dose rates in PRIDE facility is evaluated quantitatively for assessing radiation safety of workers because of large amounts of depleted uranium being handled in PRIDE facility. Even if direct radiation from depleted uranium is very low and will not expose a worker to significant amounts of external radiation. Materials and Methods: ORIGEN-ARP code was used for calculating the neutron and gamma source term being generated from depleted uranium (DU), and the MCNP5 code was used for calculating the neutron and gamma fluxes and dose rates. Results and Discussion: The neutron and gamma fluxes and dose rates due to DU on spherical surface of 30 cm radius were calculated with the variation of DU mass and density. In this calculation, an imaginary case in which DU density is zero was added to check the self-shielding effect of DU. In this case, the DU sphere was modeled as a point. In case of DU mixed with molten salt of 50-250 g, the neutron and gamma fluxes were calculated respectively. It was found that the molten salt contents in DU had little effect on the neutron and the gamma fluxes. The neutron and the gamma fluxes, under the respective conditions of 1 and 5 kg mass of DU, and 5 and $19.1g{\cdot}cm^{-3}$ density of DU, were calculated with the molten salt (LiCl+KCl) of 50 g fixed, and compared with the source term. As the results, similar tendency was found in neutron and gamma fluxes with the variation of DU mass and density when compared with source spectra, except their magnitudes. Conclusion: In the case of the DU mass over 5 kg, the dose rate was shown to be higher than the environmental dose rate. From these results, it is concluded that if a worker would do an experiment with DU having over 5 kg of mass, the worker should be careful in order not to be exposed to the radiation.

External exposure specific analysis for radiation worker in reuse of containment building for Kori Unit 1

  • Byon, Jihyang;Park, Sangjune;Kim, Yangjin;Ahn, Seokyoung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1781-1788
    • /
    • 2022
  • The containment building Kori Unit 1 may require sequential steps for full decommissioning. This study assumes that the containment building is to be used as an auxiliary building that handles nuclear power systems and materials during decommissioning before conversion into a greenfield. Through the derivation of guidelines and dose evaluation, it was confirmed whether the radiation workers were satisfied with the ALARA decision. The specific modeling of the external radiation exposure was performed based on the facility investigation procedures. The external radiation specific derived concentration guideline levels (DCGLs) for radiation workers in containment building were obtained using the RESRAD-BUILD code and were applied to the VISIPLAN 3D ALARA Planning Tool code to calculate the working dose and check worker safety. The derivation of site-specific and realistic DCGLs and dose evaluation via 3D modeling can contribute to the scenario development for the decommission and remediation of containment building.

Sensitivity Analysis on the Priority Order of the Radiological Worker Allocation Model using Goal Programming

  • Jung, Hai-Yong;Lee, Kun-Jai
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.577-582
    • /
    • 1998
  • In nuclear power plant, it has been the important object to reduce the occupational radiation exposure (ORE). Recently, the optimization concept of management science has been studied to reduce the ORE in nuclear power plant. In optimization of the worker allocation, the collective dose, working time, individual dose, an total number of worker must be considered and their priority orders must be thought because the main constraint is necessary for determining the constraints variable of the radiological worker allocation problem. The ultimate object of this study s to look into the change of the optimal allocation of the radiological worker as priority order changes. In this study, the priority order is the characteristic of goal programming that is a kind of multi-objective linear programming. From a result of study using goal programming, the total number of worker and collective dose of worker have changed as the priority order has changed and the collective dose limit have played an important role in reducing the ORE.

  • PDF

Assessment of Radiation Dose from Radioactive Wedge Filters during High-Energy X-Ray Therapy

  • Back, Geum-mun;Park, Sung Ho;Kim, Tae-Hyung
    • Progress in Medical Physics
    • /
    • v.28 no.2
    • /
    • pp.45-48
    • /
    • 2017
  • This paper evaluated the amount of radiation generated by wedge filters during radiation therapy using a high-energy linear accelerator, and the dose to the worker during wedge replacement. After 10-MV photon beam was irradiated with wedge filter, the wedge was removed from the linear accelerator, and the dose rate and energy spectrum were measured. The initial measurement was approximately 1 uSv/h, and the radiation level was reduced to 0.3 uSv/h after 6 min. The effective half-life derived from the dose rate measurement was approximately 3.5 min, and the influence of AI-28 was about 53%. From the energy spectrum measurements, a peak of 1,799 keV was measured for AI-28, while the peak for Co-58 was not measured in the control room. The peaks for Au-106 and Cd-105 were found only measurement was done without wedge removement from the linear accelerator. The additional doses received by the radiation worker during wedge replacement were estimated to be 0.08-0.4 mSv per year.

Long-term Radiation Dose Reduction Plan of KHNP

  • Kim, Saeng-Ki;Shin, Sang-Woon;Lim, Byoung-Chan
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.2
    • /
    • pp.137-143
    • /
    • 2003
  • Annual radiation dose limit to radiation worker was substantially lowered in Korea by the adoption of 1990 recommendations of the International Commission on Radiation Protection (ICRP 60) in its legislation. On the other hand, radiation management environment in nuclear power plants is getting more worse because of the accumulation of radiation sources inside the system and the frequent need for maintenance according as the operation years of nuclear power plants increase. Therefore, Korea Hydro & Nuclear power Co., Ltd. (KHNP) has established a long-term 10 years plan from 2001 to 2010 for the reduction of radiation dose to workers. The plan is aimed for the reduction of annual dose per unit averaged over 5 years from 0.9 man-Sv in 2001 to 0.75 man-Sv in 2010 by radiation source reduction, equipment/tool improvement or new equipment development for easy maintenance, and the improvement of administration and system.

Radiation Exposure from Nuclear Power Plants in Korea: 2011-2015

  • Lim, Young Khi
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.4
    • /
    • pp.222-228
    • /
    • 2017
  • Background: On June 18, 2017, Korea's first commercial nuclear reactor, the Kori Nuclear Power Plant No. 1, was permanently suspended, and the capacity of nuclear power generation facilities will be adjusted according to the governments denuclearization policy. In these circumstances, it is necessary to assess the quality of radiation safety management in nuclear power plants in Korea by evaluating the radiation dose associated with them. Materials and Methods: The average annual radiation dose per unit, the annual radiation dose per person, and the annual dose distribution were analyzed using the radiation dose database of nuclear reactors for the last 5 years. The results of our analysis were compared to the specifications of the Nuclear Safety Act and Medical Law in Korea. Results and Discussion: The annual average per unit radiation dose of global major nuclear power generation was 720 man-mSv, while that of Korea's nuclear power plants was 374 manmSv. No workers exceeded 50 mSv per year or 100 mSv in 5 years. The individual radiation dose according to occupational exposure was 0.59 mSv for nuclear workers, 1.77 mSv for non-destructive workers, and 0.8 mSv for diagnostic radiologists. Conclusion: The radiation safety management of nuclear power plants in Korea has achieved the best outcomes worldwide, which is considered to be the result of the as-low-as-reasonably-achievable (ALARA) approach and strict radiation safety management. Moreover, the occupational exposures were also very low.

Recent Trend of Occupational Exposure to Ionizing Radiation in Korea, 2015-2019

  • Lim, Young Khi
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.213-217
    • /
    • 2021
  • Background: Radiation exposure can occur as a result of occupational activities utilizing sources of radiation. The average level of occupational exposure is generally similar to the global average, but some workers receive more than this. In this study, the occupational exposure data for workers in Korea to check the recent trend of radiation exposure. Materials and Methods: The data collection and analysis are carried out by two separate periods based on the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) survey. One is the year 2003 to 2014 for a recent survey, and the other is 2015 to 2019. All available data were collected by annual reports from radiation dose registry organizations. Results and Discussion: The annual dose over the record level to the total workers did not change much compared with the total increasing number of workers in this period. The dose to the nuclear fuel cycle field has a tendency to decrease. It resulted from the efforts of radiation dose reduction with high technology introduced to this area. Also, it is important result that the radiation dose to the workers in radiography is remarkably reduced. Conclusion: The number of radiation workers and average doses were analyzed for occupational categories in Korea. It still needs cooperative efforts between the dose registry organizations for the efficient dose management of Korean radiation workers.