• Title/Summary/Keyword: Radiation Defense

Search Result 182, Processing Time 0.041 seconds

RADIATION SENSITIVITY DEPENDS ON OGG1 ACTIVITY STATUS IN HUMAN LEUKEMIA CELL LINES

  • Hyun, Jin-Won;Chung, Myung-Hee
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.83-83
    • /
    • 2002
  • To assess the role of 8-oxoguanine glycosylase (OGG1) in the cell defense against radiation injury, the radiation-induced cytotoxicities were compared between the mutant type KG-1 featuring a loss of OGG1 activity due to a homozygous mutation of Arg 229 G1n, and the wild type U937.(omitted)

  • PDF

Effects of Sheet Thickness on the Electromagnetic Wave Absorbing Characterization of Li0.375Ni0.375Zn0.25-Ferrite Composite as a Radiation Absorbent Material

  • Kim, Dong-Young;Yoon, Young-Ho;Jo, Kwan-Jun;Jung, Gil-Bong;An, Chong-Chul
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.150-158
    • /
    • 2016
  • This paper reports on a study of LiNiZn-ferrite composite as a radiation absorbent material (RAM). The electromagnetic (EM) wave absorbers are composed of an EM wave absorbing material and a polymeric binder. The surface morphology, chemical composition, weight percent of the ferrite composite of the toroid sample, magnetic properties, and return loss are investigated using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and network analyzer. For preparing the absorbing sheet, chlorinated polyethylene (CPE) is used as a polymeric binder. The EM wave absorption properties of the prepared samples were studied at 4 - 8 GHz. We can confirm the effects of the thickness of the samples for absorption properties. An absorption bandwidth of more than a 10-dB return loss shifts toward a lower frequency range along with an increase in the thickness of the absorber.

The protective effects of trace elements against side effects induced by ionizing radiation

  • Hosseinimehr, Seyed Jalal
    • Radiation Oncology Journal
    • /
    • v.33 no.2
    • /
    • pp.66-74
    • /
    • 2015
  • Trace elements play crucial role in the maintenance of genome stability in the cells. Many endogenous defense enzymes are containing trace elements such as superoxide dismutase and metalloproteins. These enzymes are contributing in the detoxification of reactive oxidative species (ROS) induced by ionizing radiation in the cells. Zinc, copper, manganese, and selenium are main trace elements that have protective roles against radiation-induced DNA damages. Trace elements in the free salt forms have protective effect against cell toxicity induced by oxidative stress, metal-complex are more active in the attenuation of ROS particularly through superoxide dismutase mimetic activity. Manganese-complexes in protection of normal cell against radiation without any protective effect on cancer cells are more interesting compounds in this topic. The aim of this paper to review the role of trace elements in protection cells against genotoxicity and side effects induced by ionizing radiation.

A Study on Radiation Shielding Materials for Protective Garments using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 보호복용 방사선 차폐 소재 연구)

  • Bae, Manjae;Lee, Hyungmin
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.239-252
    • /
    • 2015
  • Purpose: Lead has been widely used in radiation shielding for its low price and high workability. Recently in several europe countries, use of lead was banned for environmental issues. Also lead can cause health problems like alergies. Alternative materials for lead are highly required. The purpose of this study was to propose lead free radiation shielding material. Methods: Research of radiation shielding in Korea is not easy for certain limits such as radiation materials, experimental facilities and places. The collected data through the research were simulated using MCNPX. The simulation tools used for this study were utilized Monte Carlo method. Results: we suggest new design of lead free radiation shielding material using MCNPX code comparing shielding performance of new composite materials to lead. Conclusion: This newly introduced nano-scale composite of metal and polymer makes new chance for highly lightened radiation protective garments with endurable shielding performance.

The modulating activity of Ginsan on radiation-induced disturbance of antioxidant defense systems

  • Son, Soo-Jung;Kim, Chan-Wha;Yun, Yeon-Sook
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.309.1-309.1
    • /
    • 2002
  • Ginsan, a polysaccharide extracted from Panax ginseng. was earlier scrutinized for a biological-response modifier. We further studied the protective and restorative activity of Ginsan against sublethal dose irradiation owing to increase production of endogenous hematopoietic growth factors such as IL-1. TNF-${\alpha}$. IL-6, GM-CSF. Which induce strong redox-emzyme elevation. Exposing to radiation induces reactive oxygen species (ROS). which play an important causative role in radiation damage. (omitted)

  • PDF

Proteome Analysis of Escherichia coli after High-dose Radiation

  • Lim, Sangyong;Lee, Misong;Joe, Minho;Song, Hyunpa;Kim, Dongho
    • Journal of Radiation Industry
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Since proteomics can be employed to compare changes in the expression levels of many proteins under particular genetic and environmental conditions, using mass spectrometry to establish radiation stimulon, we performed two-dimensional gel electrophoresis and identified E. coli proteins whose expressions are affected by high dose of ionizing radiation. After exposure to 3 kGy, it was found that 6 proteins involved in carbon and energy metabolism were reduced. Although 4 of 7 protein spots showing a significant increase in expression level were neither identified nor classified, uridine phosphorylase (Udp), superoxide dismutase (SodB), and thioredoxin-dependent thiol peroxidase (Bcp) were proven to be up-regulated after irradiation. This suggests that E. coli subjected to high doses of radiation (3 kGy) may operate a defense system that is able to detoxify reactive oxygen species and stimulate the salvage pathway of nucleotide synthesis to replenish damaged DNA.

[6]-Gingerol Attenuates Radiation-induced Cytotoxicity and Oxidative Stress in HepG2 Cells

  • Chung, Dong-Min;Uddin, S.M. Nasir;Kim, Jin Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.376-382
    • /
    • 2013
  • [6]-Gingerol, a major polyphenol of ginger (Zingiber officinale), exhibits a variety of biological properties including anti-oxidant, anti-inflammatory and anti-cancer activity. However, the radioprotective effect of [6]-gingerol is still unknown. The aim of this study was to investigate the radioprotective effect of [6]-gingerol against radiation-induced cell cytotoxicity and oxidative stress in HepG2 cells. [6]-Gingerol pretreatment attenuated radiation-induced cell cytotoxicity caused by 5Gy (half lethal dose, $LD_{50}$ of HepG2 cells). The measurements of superoxide dismutase (SOD) and catalase (CAT) activity were also performed. The results showed that [6]-gingerol pretreatment reduced increasing SOD and CAT activity after exposure of IR, indicating that [6]-gingerol protected oxidative stress by regulating cellular antioxidant enzyme (SOD and CAT) activity. These findings suggest that [6]-gingerol acts as a radioprotector by attenuating cell cytotoxicity and oxidative stress.

Study Radiological Defense Interrelationship Research in Career (경력에 따른 방사선방어 상관성 연구)

  • Kim, Jean Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.135-138
    • /
    • 2012
  • Purpose : This research the isotope of handling was to an actual act of the radiological defense which it follows in career of the clinical pathological companies in order to inquire the interrelation for a radiological defense. Materials and Methods : The tool of this research with question from 2010 October until November did electrification Chwung Cheng and the Seoul isotope thread clinical pathological company with the object person and it investigated in direct question or mail method, the data which is collected used SPSS19.0 programs and frequency and percentage and t-test, ANOVA, it used it analyzed a multiple regression analysis method. Results : The interrelationship of the radiological defense which it follows in career was visible the interrelation which considers statistically (p<0.01). But the correlation coefficient appeared lowly with 0.196. With the variable who affects in radiological defense act it appeared with worker providing by law educations and RI license acquisitions. Conclusion : There is to business progress and the radiological defense act respects a worker safety stands the unit only is the fact which is important. Consequently a possibility of saying that the radiation worker education is necessary, it executes the education which is continuous, RI license acquisitions, there is.

  • PDF

Analysis of Radiation Shielding Effect of Soft Magnetic Material applied to Military Facility (경량 연자성 소재의 군 시설물 적용 시 방사선 차폐효과 분석)

  • Lee, Sangkyu;Lee, Sangmin;Choi, Gyoungjun;Lee, Byounghwak
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.191-199
    • /
    • 2021
  • The purpose of this research is to analyze the radiation shielding effect of soft magnetic material to confirm the applicability to the military facilities. The soft magnetic material is known to be effective in shielding EMP. If this material is also effective in radiation shielding, it is expected that it has a lot of applicability in military protection. In particular, this material contains boron, so it will be effective in shielding neutrons. In this research, experiments were conducted using Cs-137 and Co-60 sources to check the gamma ray shielding effect. In addition, the Monte Carlo N-Particle(MCNP) modeling was applied to evaluate the gamma ray and neutron shielding effect of a military command tent. As a result, as the soft magnetic thickness increased, the shielding performance improved according the linear attenuation law of gamma ray and neutron. Therefore, this research verified that the application of soft magnetic material for military purposes in radiation shielding would be effective.

Ultra High-Gain Displaced-Axis Metal Reflectarray Antenna for Millimeter-Wave Region (밀리미터파 대역의 초고이득 축이동 금속배열안테나)

  • Yi, Minwoo;Yang, Jongwon;Lee, Woosang;Jang, Won;So, Joonho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.342-349
    • /
    • 2016
  • We design a displaced-axis Gregorian dual antenna in the form of a metal reflectarray antenna for millimeter wave region, W-band. Unlike a reflectarray composed of printed patch antennas on a dielectric substrate, metallic rectangular waveguide unit-cells are proposed to avoid the loss of substrate and take an advantage of ease of typical metal machining fabrication. In this paper, the radiation characteristics of constructed metal reflectarray antennas show ultra high-gain antenna over 50 dBi at a target frequency in W-band. The experimental measurements are conducted in millimeter-wave compact range antenna measurement system.