• Title/Summary/Keyword: Radiation Database

Search Result 158, Processing Time 0.034 seconds

Evaluation of Diagnostic Reference Level in Interventional Procedures (인터벤션시술 진단참고수준 평가)

  • Kang, Byung-Sam;Park, Hyung-Shin
    • Journal of radiological science and technology
    • /
    • v.44 no.5
    • /
    • pp.451-457
    • /
    • 2021
  • Recently, the number of interventional procedures has increased dramatically as an alternative of invasive surgical procedure and patient radiation exposure is also increasing accordingly. In this study, we evaluated the patient dose of major interventional procedures nationwide and we established our Korean database. With these results, we tried to suggest the reference dose level for major interventional procedures. We evaluated patent dose data in the field of interventional radiology from foreign countries. Measurement of radiation dose exposure for 11 major interventional procedures was conducted using embedded DAP meters in 10,006 patients from 47 hospitals, and reference level of each interventional procedure was suggested. The DRLs of each intervenional procedure are as follows: TACE 206(Gy·cm2), AVF 12(Gy·cm2), LE intervention 43(Gy·cm2), TFCA 122(Gy·cm2), Cerebral aneurysm coil embolization 214(Gy·cm2), PTBD 22(Gy·cm2), Biliary stent 60(Gy·cm2), PCN 7(Gy·cm2), Hickman catheter 2.1(Gy·cm2), Chemoport 1.4(Gy·cm2), BAE 104(Gy·cm2). Compared with the previously established DRL in 2012, the radiation dose decreased in all 10 interventional procedures. In the future, continuous publicity and education on the radiation dose reduction will be needed.

A rapid and direct method for half value layer calculations for nuclear safety studies using MCNPX Monte Carlo code

  • Tekin, H.O.;ALMisned, Ghada;Issa, Shams A.M.;Zakaly, Hesham M.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3317-3323
    • /
    • 2022
  • Half Value Layer calculations theoretically need prior specification of linear attenuation calculations, since the HVL value is derived by dividing ln(2) by the linear attenuation coefficient. The purpose of this study was to establish a direct computational model for determining HVL, a vital parameter in nuclear radiation safety studies and shielding material design. Accordingly, a typical gamma-ray transmission setup has been modeled using MCNPX (version 2.4.0) general-purpose Monte Carlo code. The MCNPX code's INPUT file was designed with two detection locations for primary and secondary gamma-rays, as well as attenuator material between those detectors. Next, Half Value Layer values of some well-known gamma-ray shielding materials such as lead and ordinary concrete have been calculated throughout a broad gamma-ray energy range. The outcomes were then compared to data from the National Institute of Standards and Technology. The Half Value Layer values obtained from MCNPX were reported to be highly compatible with the HVL values obtained from the NIST standard database. Our results indicate that the developed INPUT file may be utilized for direct computations of Half Value Layer values for nuclear safety assessments as well as medical radiation applications. In conclusion, advanced simulation methods such as the Monte Carlo code are very powerful and useful instruments that should be considered for daily radiation safety measures. The modeled MCNPX input file will be provided to the scientific community upon reasonable request.

Variation Analysis of Distance and Exposure Dose in Radiation Control Area and Monitoring Area according to the Thickness of Radiation Protection Tool Using the Calculation Model: Non-Destructive Test Field (계산 모델을 활용한 방사선방어용 도구 두께에 따른 방사선관리구역 및 감시구역의 거리 및 피폭선량 변화 분석 : 방사선투과검사 분야 중심으로)

  • Gwon, Da Yeong;Park, Chan-hee;Kim, Hye Jin;Kim, Yongmin
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.279-287
    • /
    • 2020
  • Recently, interest in radiation protection is increasing because of the occurrence of accidents related to exposure dose. So, the nuclear safety act provides to install the shields to avoid exceeding the dose limit. In particular, when the worker conducts the non-destructive testing (NDT) without the fixed shielding structure, we should monitor the access to the workplace based on a constant dose rate. However, when we apply for permits for NDT work in these work environments, the consideration factors to the estimation of the distance and exposure dose are not legally specified. Therefore, we developed the excel model that automatically calculates the distance, exposure dose, and cost if we input the factors. We applied the assumption data to this model. As a result of the application, the distance change rate was low when the thickness of the lead blanket and collimator is above 25 mm, 21.5 mm, respectively. However, we didn't consider the scattering and build-up factor. And, we assumed the shape of the lead blanket and collimator. Therefore, if we make up for these limitations and use the actual data, we expect that we can build a database on the distance and exposure dose.

The Development of the Short-Term Predict Model for Solar Power Generation (태양광발전 단기예측모델 개발)

  • Kim, Kwang-Deuk
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.62-69
    • /
    • 2013
  • In this paper, Korea Institute of Energy Research, building integrated renewable energy monitoring system that utilizes solar power generation forecast data forecast model is proposed. Renewable energy integration of real-time monitoring system based on monitoring data were building a database and the database of the weather conditions and to study the correlation structure was tailoring. The weather forecast cloud cover data, generation data, and solar radiation data, a data mining and time series analysis using the method developed models to forecast solar power. The development of solar power in order to forecast model of weather forecast data it is important to secure. To this end, in three hours, including a three-day forecast today Meteorological data were used from the KMA(korea Meteorological Administration) site offers. In order to verify the accuracy of the predicted solar circle for each prediction and the actual environment can be applied to generation and were analyzed.

Robust Similarity Retrieval for Radial Distortion of Object Shape Based on the Normalized Phase Angles and Moment

  • An, Young Eun;Kim, Tae Yeun
    • Journal of Integrative Natural Science
    • /
    • v.12 no.2
    • /
    • pp.35-43
    • /
    • 2019
  • In the content-based image search properties, form information is simple because only the contours of objects are available, and although it can effectively extract the characteristics of the objects, it is sensitive to external noise. The radial distortion, one of these noises, is most prominent in the eyewear and, due to the structural characteristics of the imaging equipment, radiative distortion occurs in almost all imaging equipment. It is very important to determine the similarity of the objects in the images in which these distortions occurred to the actual objects. In order to improve this problem, we propose a strong image search technique for formative noise and radiative distortion using regularization phase angles and moments. Through simulation using Wang DB, the proposed algorithm proved excellent performance for radiation distortion that occurs in general. In addition, a system optimized for database can be implemented by making appropriate changes to the threshold values, enabling image retrieval with the desired level of confidence in various systems. The algorithm proposed in this paper is expected to be utilized as an optimal imaging system by extracting morphological form information of multimedia data.

Database of virtual spectrum of artificial radionuclides for education and training in in-situ gamma spectrometry

  • Yoomi Choi;Young-Yong Ji;Sungyeop Joung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.190-200
    • /
    • 2023
  • As the field of application of in-situ gamma spectroscopy is diversified, proficiency is required for consistent and accurate analysis. In this study, a program was developed to virtually create gamma energy spectra of artificial nuclides, which are difficult to obtain through actual measurements, for training. The virtual spectrum was created by synthesizing the spectra of the background radiation obtained through actual measurement and the theoretical spectra of the artificial radionuclides obtained by a Monte Carlo simulation. Since the theoretical spectrum can only be obtained for a given geometrical structure, representative major geometries for in-situ measurement (ground surface, concrete wall, radioactive waste drum) and the detectors (HPGe, NaI(Tl), LaBr3(Ce)) were predetermined. Generated virtual spectra were verified in terms of validity and harmonization by gamma spectrometry and energy calibration. As a result, it was confirmed that the energy calibration results including the peaks of the measured spectrum and the peaks of the theoretical spectrum showed differences of less than 1 keV from the actual energies, and that the calculated radioactivity showed a difference within 20% from the actual inputted radioactivity. The verified data were assembled into a database and a program that can generate a virtual spectrum of desired condition was developed.

MULTISCALE MODELING OF RADIATION EFFECTS ON MATERIALS: PRESSURE VESSEL EMBRITTLEMENT

  • Kwon, Jun-Hyun;Lee, Gyeong-Geun;Shin, Chan-Sun
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.11-20
    • /
    • 2009
  • Radiation effects on materials are inherently multiscale phenomena in view of the fact that various processes spanning a broad range of time and length scales are involved. A multiscale modeling approach to embrittlement of pressure vessel steels is presented here. The approach includes an investigation of the mechanisms of defect accumulation, microstructure evolution and the corresponding effects on mechanical properties. An understanding of these phenomena is required to predict the behavior of structural materials under irradiation. We used molecular dynamics (MD) simulations at an atomic scale to study the evolution of high-energy displacement cascade reactions. The MD simulations yield quantitative information on primary damage. Using a database of displacement cascades generated by the MD simulations, we can estimate the accumulation of defects over diffusional length and time scales by applying kinetic Monte Carlo simulations. The evolution of the local microstructure under irradiation is responsible for changes in the physical and mechanical properties of materials. Mechanical property changes in irradiated materials are modeled by dislocation dynamics simulations, which simulate a collective motion of dislocations that interact with the defects. In this paper, we present a multi scale modeling methodology that describes reactor pressure vessel embrittlement in a light water reactor environment.

Recent Activities in Space Environment Engineerings in Japan Aerospace Exploration Agency

  • Koshiishi, Hideki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.93.2-93.2
    • /
    • 2011
  • Japan Aerospace Exploration Agency (JAXA) has measured space environment and its effects on spacecraft and astronaut since 1987. At present, we have operated space environment monitors onboard one GEO spacecraft, one QZO spacecraft, and two LEO spacecrafts. The obtained space environment data has been gathered into the Space Environment and Effects System database (SEES, http://sees.tksc.jaxa.jp/). In this presentation, measurement result of space environment in low earth orbit obtained by the Daichi satellite from 2006 through 2011 is reported as well as recent activities in space environment engineerings in JAXA. The Technical Data Acquisition Equipment (TEDA) on board the Daichi satellite (Advanced Land Observing Satellite: ALOS) had been operated in low earth orbit at 700 km altitude with 98 degree inclination from February 2006 until April 2011. The TEDA consists of the Light Particle Telescope and the Heavy Ion Telescope. The operation period of the Daichi satellite was through the solar-activity minimum period. The space radiation environment around the Daichi satellite had been almost stable. However, large solar flares followed by CMEs sometimes disturbed the space radiation environment in the orbit of the Daichi satellite. In addition, high speed solar wind often flowed and modulated the electron flux in the horn region. On the other hand, a little variation was seen in the SAA region.

  • PDF

Co-authorship patterns and networks of Korean radiation oncologists

  • Choi, Jin-Hyun;Kang, Jin-Oh;Park, Seo-Hyun;Kim, Sang-Ki
    • Radiation Oncology Journal
    • /
    • v.29 no.3
    • /
    • pp.164-173
    • /
    • 2011
  • Purpose: This research aimed to analyze the patterns of co-authorship network among the Korean radiation oncologists and to identify attributing factors for the formation of networks. Materials and Methods: A total of 1,447 articles including contents of ‘Radiation Oncology' and 'Therapeutic Radiology' were searched from the KoreaMed database. The co-authorship was assorted by the author's full name, affiliation and specialties. UCINET 6.0 was used to fi gure out the author's network centrality and the cluster analysis, and KeyPlayer 1.44 program was used to get a result of key player index. Sociogram was analyzed with the Netdraw 2.090. The statistical comparison was performed by a t-test and ANOVA using SPSS 16.0 with p-value < 0.05 as the significant value. Results: The number of articles written by a radiation oncologist as the first author was 1,025 out of 1,447. The pattern of coauthorship was classified into five groups. For articles of which the first author was a radiation oncologist, the number of singleauthor articles (type-A) was 81; single-institution articles (type-B) was 687; and multiple-author articles (type-C) was 257. For the articles which radiation oncologists participated in as a co-author, the number of single-institution articles (type-D) was 280 while multiple-institution articles (type-E) were 142. There were 8,895 authors from 1,366 co-authored articles, thus the average number of authors per article was 6.51. It was 5.73 for type-B, 6.44 for type-C, 7.90 for type-D, and 7.67 for type-E (p = 0.000) in the average number of authors per article. The number of authors for articles from the hospitals published more than 100 articles was 7.23 while form others was 5.94 (p = 0.005). Its number was 5.94 and 7.16 for the articles published before and after 2001 (p = 0.000). The articles written by a radiation oncologist as the first author had 5.92 authors while others for 7.82 (p = 0.025). Its number was 5.57 and 7.71 for the Journal of the Korean Society for Therapeutic Radiology and Oncology and others (p = 0.000), respectively. Among the analysis, a significant difference in the average number of author per article was indicated. The out-degree centrality of network among authors was 4.26% (2.03-7.09%) while in-degree centrality was 1.31% (0.53-2.84%). The three significant nodes were classified and listed as following: Choi, Eun Kyung for 1991-1995, Kim, Dae Young for 1998-2001, Park, Won and Lee, Sang Wook for 2003-2010. Choi, Eun Kyung and Kim, Dae Young appeared in two cases, and ranked as the highest degree in centrality. In the key player analysis, Choi, Eun Kyung and Lee, Sang Wook appeared in two cases, and ranked as the highest. From the cluster analysis, Sungkyunkwan University, Seoul National University and Yonsei University revealed as the three large clusters when Ulsan University, Chonnam National University, and Korea Institute of Radiological & Medical Science as the medium clusters. Conclusion: The Korean radiation oncologist's society shows a closed network with numerous relationships among the particular clusters, and the result indicates it is different from other institutions in the pattern of co-authorship formation of the major hospitals.

Smad6 Gene and Suppression of Radiation-Induced Apoptosis by Genistein in K562 Cells (K562 세포주에서 Genistein에 의해 억제되는 Radiation-induced Apoptosis의 조절 유전자)

  • Jeong, Soo-Jin;Jin, Young-Hee;Yoo, Yeo-Jin;Do, Chang-Ho;Jeong, Min-Ho;Huh, Gi-Yeong;Bae, Hye-Ran;Yang, Kwang-Mo;Moon, Chang-Woo;Oh, Sin-Geun;Hur, Won-Joo;Lee, Hyung-Sik
    • Radiation Oncology Journal
    • /
    • v.19 no.3
    • /
    • pp.245-251
    • /
    • 2001
  • Prupose : The genes involved on the suppression or radiation-induced apoptosis by genistein in K562 leukemia cell line was investigated. Materials and methods : K562 cells in exponential growth phase were irradiated with a linear accelerator at room temperature. For X-ray irradiation and drug treatment, cultures were prepared at $2\times10^5\;cells/mL$. The cells were irradiated with 10 Gy (Clinac 1800C, Varian, USA), Stock solutions of herbimycin A (HMA, Calbiochem, UK) and genistein (Calbiochem, UK) were prepared in dimethylsulfoxide (DMSO, Sigma, UK). After incubation at $37^{\circ}C$ for 24 h, PCR-select cDNA subtractive hybridization, dot hybridization, DNA sequencing and Northern hybridization were examined. Results : Smad6 gene was identified from the differentially expressed genes in K562 cells incubated with genistein which had been selected by PCR-select cDNA subtractive hybridization. The mRNA expression of Smad6 in K562 cells incubated with genistein was also higher than control group by Northern hybridization analysis. Conclusion : We have shown that Smad6 involved on the suppression of radiation-induced apoptosis by genistein in K562 leukemia cell line. It is plausible that the relationship between Smad6 and the suppression of radiation-induced apoptosis is essential for treatment development based on molecular targeting designed to modify radiation-induced apoptosis.

  • PDF