• Title/Summary/Keyword: Radiation Compensation

Search Result 75, Processing Time 0.023 seconds

Model Identification for Control System Design of a Commercial 12-inch Rapid Thermal Processor (상업용 12인치 급속가열장치의 제어계 설계를 위한 모델인식)

  • Yun, Woohyun;Ji, Sang Hyun;Na, Byung-Cheol;Won, Wangyun;Lee, Kwang Soon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.486-491
    • /
    • 2008
  • This paper describes a model identification method that has been applied to a commercial 12-inch RTP (rapid thermal processing) equipment with an ultimate aim to develop a high-performance advanced controller. Seven thermocouples are attached on the wafer surface and twelve tungsten-halogen lamp groups are used to heat up the wafer. To obtain a MIMO balanced state space model, multiple SIMO (single-input multiple-output) identification with highorder ARX models have been conducted and the resulting models have been combined, transformed and reduced to a MIMO balanced state space model through a balanced truncation technique. The identification experiments were designed to minimize the wafer warpage and an output linearization block has been proposed for compensation of the nonlinearity from the radiation-dominant heat transfer. As a result from the identification at around 600, 700, and $800^{\circ}C$, respectively, it was found that $y=T(K)^2$ and the state dimension of 80-100 are most desirable. With this choice the root-mean-square value of the one-step-ahead temperature prediction error was found to be in the range of 0.125-0.135 K.

Growth Characteristics and Physiological Adaptation of Pinus densiflora Seedling in the Canopy Gap (소나무 묘목(苗木)의 Gap내 생장(生長) 및 생리적(生理的) 적응과정(適應過程))

  • Jin, Yonghuan;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.452-460
    • /
    • 2000
  • This study was to investigate the growth characteristics, physiological adaptation of Pinus densiflora(Japanese Red Pine) seedlings at the artificial canopy gap in the Quercus acutissima plantation and to analyze its natural regeneration mechanism. Photosynthetic and transpiration rates were analyzed by different levels of photosynthetically active radiation and by seedling growth. Comparing to seedlings at the open area, those at the canopy gap showed more growth in height than in diameter with different levels of light quality and low light intensity, and the increase rate of dry weight was higher in the aboveground than in the underground, maintaining relatively high T/R rate. The C/F(the ratio of non-photosynthetic organs to photosynthetic organs in dry weight) of the aboveground at the canopy gap was higher than that at the open area by 0.1~0.2, while light saturation and light compensation points at the canopy gap were lower than that at the open area by $300{\mu}mol\;m^{-2}s^{-1}$ and 40%, respectively. The seedlings appeared to have shade tolerance to a certain extent at the young growth stage despite Pinus densiflora is typically classified shade-intolerant species. With light intensity lower than $400{\sim}450{\mu}mol\;m^{-2}s^{-1}$, photosynthetic rate and water use efficiency relatively increased by effective use of light energy.

  • PDF

Verification of Radiation and Beam-Steering Characteristics for Planar-Phased Array Radars Using Near-Field Beam Focusing (근전계 빔 집속 시험 기법을 활용한 평면위상배열레이다 시스템 복사 및 빔 조향 특성 검증)

  • Kim, Young-Wan;Lee, Jaemin;Jung, Chae-Hyun;Park, Jongkuk;Lee, Yuri;Kim, Jong-Phil;Kim, Sunju
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.160-168
    • /
    • 2019
  • In this study, we propose a verification method for a planar-phased array radar system using a near-field beam focusing(NFBF) test method. We then confirmed the validity of the results. The proposed method can be used to verify a radar system in the near-field range of twice the antenna aperture size, and this is done in the same manner as the field system performance test conducted in a non-outdoor electromagnetic anechoic chamber. The test configuration and procedure for verifying the NFBF using near-field energies were reviewed. In addition, the phase compensation values of additional individual channels were quantified through mathematical verification of the beam-steered NFBF test. Based on a theoretical verification, the actual NFBF test was performed and the validity of the test method was confirmed through comparison with ideal analytical results.

Evaluation of Usefulness of Assertive Devices to Improve the Accuracy in Skull lateral X-ray Projection (두개골 측방향 X-선 촬영에서 정확도 향상을 위한 촬영 보조 기구의 유용성 평가)

  • Bo-Seok Chang
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.153-159
    • /
    • 2024
  • In X-ray projection, Unskilled radiologists become skilled through fail exam. This causes the patient to be exposed to unnecessary radiation. In this study, pre-position unskilled radiologic technologist presented ways to improve clinical proficiency. presented a skull lateral x-ray projection practice method using visual, spatial, and assistive devices. In addition, the accuracy and usefulness of the use of assistive devices were evaluated. When X-ray images were taken based on learning, the rotational spacing, which indicates image distortion, was 7.85 ± 1.45 mm and the tiliting spacing was 4.84 ± 0.5 mm. When practicing using visual aids, the rotational spacing is 4.4 ± 0.76 mm and the inclination spacing is 3.01 ± 0.87 mm. using a spatial compensation device, the rotational spacing is 5.2 ± 0.69 mm and the tiliting spacing is 3.33 ± 0.61 mm. Skull lateral X-ray Image distortion caused by empirical photography practice decreased by 5.4%, but image distortion caused by tilting increased by 1.2%. When practicing using a visual assistive devices, the degree of rotational spacing by 40.1% and the tiliting spacing decreased by 30.7% compared to the empirical x-ray exposure practice. When using spatial assistive devices, the rotation interval was reduced by 41.7% and the tilting interval by 23.7% compared to conventional empirical x-ray exposure practice. Therefore, if an unskilled radiologist practices using visual and spatial aids,the accuracy will be improved in skull lateral x-ray projection.

Effects of Light, Temperature, and Water Stress on the Photosynthesis and Respiration Rates of Leaves in Four Oak Species (4종(種)의 참나무엽(葉)의 광합성속도(光合成速度)와 호흡속도(呼吸速度)에 미치는 광(光), 온도(溫度), 수분(水分)의 영향(影響))

  • Han, Sang Sup;Kim, Ha Sun
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.2
    • /
    • pp.151-159
    • /
    • 1989
  • The present study has been designed to define the effects of photosynthetically active radiation, leaf temperature, and water stress on photosynthesis and respiration of leaves of four oak species (Quercus mongolica, Quercus aliens, Quercus variabilis, and Quercus serrate). The results obtained are as follows : 1. The estimated light compensation points at which Pn approached zero were 38, 24, 20, and $18{\mu}Em^{-2}s^{-1}$ for Q. aliens, Q. variabilis, Q, mongolica, and Q. serrate, respectively. The light saturation points occurred at $500{\mu}Em^{-2}s^{-1}$ in three oak species except Q, aliens. 2. The maximum rates of Pn were 19.7, 15.2, 11.2, and 11.0 mg $CO_2$ $dm^{-2}h^{-1}$ for Q. variabilis, Q. serrate, Q. monglica, and Q. aliens leaves, respectively. 3. The transpiration rates of Q. variabilis and Q. serrate leaves were slightly higher than those of Q. mongolica and Q. aliens leaves at various photosynthetically active radiations(PAR), but cuticular transpiration rates at dark were similar in four oak species. 4. The optimum photosynthesis occurred at $25^{\circ}C$ in Q. aliens, Q. variabilis, and Q. serrate leaves, but $20^{\circ}C$ in Q. mongolica leaves. In four oak species, the net photosynthesis approached zero at about $40^{\circ}C$. 5. The dark respiration rates of leaves exhibited the following ranking of species : Q, variabilis > Q. mongolica > Q. aliens > Q. serrate. 6. The maximum productive efficiency (Pg/Rd) of leaves occurred highest in Q, serrate at $20^{\circ}C$, then in Q. mongolica at $20^{\circ}C$, then in Q, aliens at $25^{\circ}C$, and finally in Q. variabilis at $15^{\circ}C$. 7. The decrease of net photosynthesis in Q. serrate began at about -1.2 MPa, and then approached zero at -2.9 MPa of leaf water potential. The decrease of net photosynthesis began at 3% of water loss, and then approached zero at 17.5% of water loss. 8. As indicated by tissue-water relations parameters, it may be suggested that Q. aliens and Q. variabilis are more tolerant and favored on xeric forest soils than Q. mongolica and Q. serrate.

  • PDF