• Title/Summary/Keyword: Radiation Area

Search Result 1,664, Processing Time 0.023 seconds

Prognostic Significance of Two Dimensional AgNOR Evaluation in Local Advanced Rectal Cancer Treated with Chemoradiotherapy

  • Gundog, Mete;Yildiz, Oguz G;Imamoglu, Nalan;Aslan, Dicle;Aytekin, Aynur;Soyuer, Isin;Soyuer, Serdar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8155-8161
    • /
    • 2016
  • The prognostic significance of AgNOR proteins in stage II-III rectal cancers treated with chemoradiotherapy was evaluated. Silver staining was applied to the $3{\mu}m$ sections of parafin blocked tissues from 30 rectal cancer patients who received 5-FU based chemoradiotherapy from May 2003 to June 2006. The microscopic displays of the cells were transferred into the computer via a video camera. AgNOR area (nucleolus organizer region area) and nucleus area values were determined as a nucleolus organizer regions area/total nucleus area (NORa/TNa). The mean NORa/TNa value was found to be $9.02{\pm}3.68$. The overall survival and disease free survival in the high NORa/TNa (>9.02) patients were 52.2 months and 39.4 months respectively, as compared to 100.7 months and 98.4 months in the low NORa/TNa (<9.02) cases. (p<0.001 and p<0.001 respectively). In addition, the prognosis in the high NORa/TNa patients was worse than low NORa/TNa patients (p<0.05). In terms of overall survival and disease-free survival, a statistically significant negative correlation was found with the value of NORa/TNa in the correlations tests. Cox regression analyses demostrated that overall survival and disease-free survival were associated with lymph node status (negative or positive) and the NORa/TNa value. We suggest that two-dimensional AgNOR evaluation may be a safe and usable parameter for prognosis and an indicator of cell proliferation instead of AgNOR dots.

Radiation recall dermatitis induced by tamoxifen during adjuvant breast cancer treatment

  • Rhee, Jiyoung;Kim, Gwi Eon;Lee, Chang Hyun;Kwon, Jung-Mi;Han, Sang-Hoon;Kim, Young Suk;Kim, Woo-Kun
    • Radiation Oncology Journal
    • /
    • v.32 no.4
    • /
    • pp.262-265
    • /
    • 2014
  • Tamoxifen and radiotherapy are used in breast cancer treatment worldwide. Radiation recall dermatitis (RRD), induced by tamoxifen, has been rarely reported. Herein, we report a RRD case induced by tamoxifen. A 47-year-old woman had a right quadrantectomy and an axillary lymph node dissection due to breast cancer. The tumor was staged pT2N0; it was hormone receptor positive, and human epidermal growth factor receptor 2 negative. The patient received adjuvant chemotherapy followed by tamoxifen and radiotherapy. After 22 months of tamoxifen, the patient developed a localized heating sensation, tenderness, edema, and redness at the irradiated area of the right breast. The symptoms improved within 1 week without treatment. Three weeks later, however, the patient developed similar symptoms in the same area of the breast. She continued tamoxifen before and during dermatitis, and symptoms resolved within 1 week.

Study of Radiation Mapping System for Water Contamination in Water System (방사능 수치 오염 지도 작성을 위한 방사선 계측 시스템 연구)

  • Na, Teresa W.;Kim, Han Soo;Yeon, Jei Won;Lee, Rena;Ha, Jang Ho
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.185-189
    • /
    • 2011
  • As nuclear industry has been developed, a various types of radiological contamination has occurred. After 9.11 terror in U.S.A., it has been concerned that terrorists' active area has been enlarged to use nuclear or radioactive substance. Recently, the most powerful earth-quake stroke, which triggered a massive tsunami in Japan and then Fukushima nuclear power plant reactor has suffered from a serious accident in history. The Fukushima reactor accident has occurred an anxiety of radiation leaks and about 170,000 people have been evacuated from the accidental area near the nuclear power plant. For these reasons, a social chaos can be occurred if radiological contamination occurs to the supply system for the drinking water. As such, the establishment of the radiation monitoring system for the city main water system is compelling for the national security. In this study, a feasibility test of radiation monitoring system which consists of unified hybrid-type radiation detectors was experimented for multi detection system by using gamma-ray imaging. The hybrid-type radiation sensors were fabricated with CsI(Tl) scintillators and photodiodes. A preamplifier and amplifier was also fabricated and assembled with the sensor in the shielding case. For the preliminary test of detection of radiological contamination in the river, multi CsI(Tl)-PIN photodiode radiation detectors and $^{137}Cs$ gamma-ray source were used. The DAQ was done by Linux based ROOT program and NI DAQ system with Labview program. The simulated contamination was assumed to be occurred at Gapcheon river in Daejeon city. Multi CsI(Tl)-PIN photodiode radiation detectors were positioned at the Gapcheon river side. Assuming that the radiological contaminations flows in the river the $^{137}Cs$ gamma-ray source has been moved and then, the contamination region was reconstructed.

Autonomous exploration for radioactive sources localization based on radiation field reconstruction

  • Xulin Hu;Junling Wang;Jianwen Huo;Ying Zhou;Yunlei Guo;Li Hu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1153-1164
    • /
    • 2024
  • In recent years, unmanned ground vehicles (UGVs) have been used to search for lost or stolen radioactive sources to avoid radiation exposure for operators. To achieve autonomous localization of radioactive sources, the UGVs must have the ability to automatically determine the next radiation measurement location instead of following a predefined path. Also, the radiation field of radioactive sources has to be reconstructed or inverted utilizing discrete measurements to obtain the radiation intensity distribution in the area of interest. In this study, we propose an effective source localization framework and method, in which UGVs are able to autonomously explore in the radiation area to determine the location of radioactive sources through an iterative process: path planning, radiation field reconstruction and estimation of source location. In the search process, the next radiation measurement point of the UGVs is fully predicted by the design path planning algorithm. After obtaining the measurement points and their radiation measurements, the radiation field of radioactive sources is reconstructed by the Gaussian process regression (GPR) model based on machine learning method. Based on the reconstructed radiation field, the locations of radioactive sources can be determined by the peak analysis method. The proposed method is verified through extensive simulation experiments, and the real source localization experiment on a Cs-137 point source shows that the proposed method can accurately locate the radioactive source with an error of approximately 0.30 m. The experimental results reveal the important practicality of our proposed method for source autonomous localization tasks.

Analysis of Trends in Dose through Evaluation of Spatial Dose Rate and Surface Contamination in Radiation-Controlled Area and Personal Exposed Dose of Radiation Worker at the Korea Institute of Radiological and Medical Sciences (KIRAMS)

  • Lee, Bu Hyung;Kim, Sung Ho;Kwon, Soo Il;Kim, Jae Seok;Kim, Gi-sub;Park, Min Seok;Park, Seungwoo;Jung, Haijo
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.146-155
    • /
    • 2016
  • As the probability of exposure to radiation increases due to an increase in the use of radioisotopes and radiation generators, the importance of a radiation safety management field is being highlighted. We intend to help radiation workers with exposure management by identifying the degree of radiation exposure and contamination to determine an efficient method of radiation safety management. The personal exposure doses of the radiation workers at the Korea Institute of Radiological & Medical Sciences measured every quarter during a five-year period from Jan. 1, 2011 till Dec. 31, 2015 were analyzed using a TLD (thermoluminescence dosimeter). The spatial dose rates of radiation-controlled areas were measured using a portable radioscope, and the level of surface contamination was measured at weekly intervals using a piece of smear paper and a low background alpha/beta counter. Though the averages of the depth doses and the surface doses in 2012 increased from those in 2011 by about 14%, the averages were shown to have decreased every year after that. The exposure dose of 27 mSv in 2012 increased from that in 2011 in radiopharmaceutical laboratories and, in the case of the spatial dose rate, the rate of decrease in 2012 was shown to be similar to the annual trend of the whole institute. In the case of the surface contamination level, as the remaining radiation-controlled area with the exception of the I-131 treatment ward showed a low value less than $1.0kBq/m^2$, the annual trend of the I-131 treatment ward was shown to be similar to that of the entire institute. In conclusion, continuous attention should be paid to dose monitoring of the radiation-controlled areas where unsealed sources are handled and the workers therein.

Heat Transfer Analysis of the Radiation Shield in Cryogenic Systems (극저온 시스템의 복사쉴드의 열전달 해석)

  • 정은수;박희찬;양형석;장호명
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.177-180
    • /
    • 2002
  • A numerical model to obtain the temperature distribution in a radiation shield of cryogenic systems was proposed. Conformal mapping was used to transform the eccentric physical region of the upper plate to the concentric numerical region. The effects of the thickness of the radiation shield, the emissivities of the vacuum chamber and the radiation shield, and the eccentricity between the centers of the upper plate and the contact area with a cryocooler on the maximum temperature difference in a radiation shield were shown.

  • PDF

Visible Project Area for Korean Child (Six Years Old) in Radiant Enclosures (한국 어린이를 위한 복사 공간에서의 투사 면적에 관한 연구)

  • 손철수;최민권
    • Journal of the Korean housing association
    • /
    • v.11 no.4
    • /
    • pp.77-84
    • /
    • 2000
  • The purpose of this paper is to find a visible project area for an average six year old Korean child in radiant enclosures having standing pose. The results using this method will be necessary to find effective radiation area, effective radiation area factor, form factor, and mean radiant temperature for an average six years old Korean child consists of 3012 triangles. The methods to find visible project area of an average six years old Korean at arbitrary view point will be presented. The visible project area for Korean child is needed for evaluating thermal comfort for six years old Korean child. The biggest visible project area of an average six years old Korean is $\textrm{cm}^2$$2.061.0\textrm{cm}^2$ at the view point of alfa 0.0 degree and beta 0.0 degree, and the smallest visible real area of an average six years old Korean is $567.1\textrm{cm}^2$ at the view point of alfa 15.0 degree and beta 90.0 degree.

  • PDF

Analysis of Radiation Energy Budget Using WISE Observation Data on the Seoul Metropolitan Area (WISE 관측자료를 이용한 수도권지역의 복사에너지수지 분석)

  • Jee, Joon-Bum;Lee, Hankyung;Min, Jae-Sik;Chae, Jung-Hoon;Kim, Sangil
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.103-114
    • /
    • 2017
  • Radiation energy budget was analyzed using observation data from the Weather Information Service Engine (WISE) energy flux tower on the Seoul metropolitan area. Among observation data from the 13 energy flux towers, we used meteorological variables, radiation data (upward and downward short wave, upward and downward long wave, net short wave, net long wave and net radiation), albedo and emissivity for 15 months from July 2016 to September 2017. Although Gajwa (205) and Ttuksumm (216) sites located in urban, the albedo was relatively high due to the surround environment by glass wall buildings and the Han river around the sites. And Bucheon (209) site located in the suburb represented generally low emissivity. As a result, the albedo decreased and the emissivity increased in the city center. In the Seoul metropolitan area, the net radiation energy is $73.9W/m^2$ that the radiation budget of the surface is absorbed into the atmosphere. According to WISE observation data, it can be seen that observation at each sites are influenced by the surrounding environment.

Exotic Plant Species around Jeongeup Research Complex and RFT Industrial Complex (정읍 신정동 연구단지 및 RFT산업단지 주변 외래식물 현황)

  • Kim, Jin Kyu;Cha, Minkyoung;Ryu, Tae Ho;Lee, Yun-Jong;Kim, Jin-Hong
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.119-126
    • /
    • 2015
  • In Shinjeong-dong of Jeongeup, there are three government-supported research institutes and an RFT industrial complex which is currently being established. Increased human activities can affect flora and fauna as a man-made pressure onto the region. As a baseline study, status of exotic plants was investigated prior to a full operation of the RFT industrial complex. A total of 54 species and 1 variety of naturalized or introduced plants were found in the study area. Among them, three species (Ambrosia artemisifolia var. elatior, Rumex acetocella and Aster pilosus) belong to 'nuisance species', and four species(Phytolacca americana, Iopomoea hederacea, Ereechtites hieracifolia and Rudbeckia laciniata) to 'monitor species' designated by the ministry of Environment. Some of naturalized trees and plants were intentionally introduced in this area, while others naturally immigrated. Physalis angulata seemes to immigrate in the study area in the form of mixture with animal feeds as its distribution coincided with the transportation route of the animal feeds. Liquidambar styraciflua is amenable to the ecological investigation on the possible expansion of the species to the nearby Naejang National Park as its leave shape and autumn color are very similar to those of maple trees. The number of naturalized plants around the RFT industrial complex will increase with an increase in floating population, in human activities in association with constructions of factories and operations of the complex. The result of this study provides baseline data for assessing the ecological change of the region according to the operation of the RFT industrial complex.

Comparative Evaluation of Kerma Area Product and New Fundamental of Kerma Area Product on Radiography (방사선촬영에서 면적선량 및 새로운 실질면적선량 개념의 비교 평가)

  • Choi, Woo Cheol;Kim, Yongmin;Kim, Jung Su
    • Journal of radiological science and technology
    • /
    • v.44 no.1
    • /
    • pp.53-58
    • /
    • 2021
  • Kerma Area Product (KAP) is best indicator of radiation monitoring on radiographic examinations. KAP can be measured differently depending on the X-ray irradiation area, air kerma, souce-skin distance, type of equipment, etc. The major factors are exposure area and the air krema. The KAP currently used only considers the exposure area with X-rays and has a problem that KAP is always excessively overestimated from the dose received by an actual subject. Therefore, in this study, in order to measure the accurate KAP, a new area dose calculation that can be calculated by dividing the area where the actual X-ray is irradiated is presented, and the KAP is the real area. We compared and analyzed how much it was overestimated compared to the dose. The Skull AP projection and seven other projection were compared and analyzed, and the KAP was overestimated in each test by 52% to 60%. In this way, the effective KAP (EKAP) calculation developed through this study should be utilized to prevent extra calculation of the existing KAP, and only the accurate patient subject area should be calculated to derive the accurate area dose value. EKAP is helpful for control the patient's exposure dose more finely, and it is useful for the quality control of medical radiation exposure.