• Title/Summary/Keyword: Radiata pine plywood

Search Result 14, Processing Time 0.03 seconds

A Study on the Distortion of Radiata Pine Plywood (라디에타소나무 합판의 굽음에 관한 연구)

  • Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.39-44
    • /
    • 1997
  • 4군데의 임반에서 선발된 라디에타 소나무를 공시목으로 두께 2.6mm와 1.4mm의 단판을 제작하였다. 단판을 조합하여 만들어진 합판의 크기는 $1200{\times}2400{\times}12.5mm$이었다. 12.5mm의 합판으로 단판의 성질에 따른 합판의 굽음을 조사하였던 바 단판의 성질과 합판의 굽음과의 관계는 낮은 상관관계를 보였다.

  • PDF

Use of Polyethylene as an Additive in Plywood Adhesive (합판 접착제의 첨가제로서 폴리에틸렌의 이용)

  • Oh, Yong-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.14-18
    • /
    • 1998
  • A low density polyethylene(LDPE) was examined as an additive in phenol-formaldehyde(PF) resin adhesive for bonding radiata pine plywood. The LDPE was supplied by the commercial manufacturer. The LDPE was compared to a commercial filler commonly used in structural plywood adhesives in the United States. The adhesive mixes were made by following the recommended procedure of Georgia-Pacific Resins Inc.. using plywood-type PF resin. A total of 48 three-ply plywoods. 6.3 mm nominal thickness and 30 by 30 em in size, were made at two press times (4 and 5 min). two press temperatures (150 and $160^{\circ}C$) and 30 minute assembly times for four adhesive mixing types. Evaluations of the LDPE addition were carried out by performance tension shear tests after two cycle boil aging tests on plywood per the U.S. Product Standard PS I-83. After accelerated-aging tests. plywoods were exhibited no delamination. The test results included tension shear strength and estimated wood failure values. The plywood test results support the use of polyethylene as an additive in plywood adhesives.

  • PDF

Effect of Filler Types on Phenol-Formaldehyde Resin Adhesive for Plywood (충전제의 종류가 합판용 페놀수지 접착제에 미치는 효과)

  • Oh, Yong-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.48-52
    • /
    • 1998
  • Residues such as walnut, pinenut and peanut shells were used as a filler in adhesive for bonding radiata pine plywood. The nutshell residues were prepared by simply drying to 8% moisture content and grinding the dry material using a laboratory Wiley mill with a $75{\mu}m$ (200 mesh) screen. The nutshells residues were compared to a commercial filler commonly used in adhesives by the structural plywood and laminated veneer lumber industry in the United States. The adhesive mixes were made by following the recommended procedure of Georgia-Pacific Resins, Inc., using phenol-formaldehyde resin. For each filler type, three-ply plywoods, 6 mm nominal thickness and 30 by 30 cm in size, were fabricated at two press times (4 and 5 min) and around 30 minute assembly time. Evaluations of the nutshell residues were carried out by tension shear tests after cyclic boil tests on plywood. The results of the performance test included tension shear strength and wood failure. All plywoods made with the nutshell fillers were comparable to those made with the control filler. These results indicate that nutshell residues would be suitable as filler for plywood adhesives.

  • PDF

Plywood Properties Related to Veneer Properties of Pinus radiata (라디에타 소나무의 단판특성에 따른 합판의 성질)

  • Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.26-35
    • /
    • 1996
  • 4군데의 임반에서 선발된 라디에타 소나무를 공시목으로 두께 2.6mm 와 1.4mm의 단판을 제작하였다. 단판을 조합하여 만들어진 합판의 크기는 $1200mm{\times}2400mm{\times}12.5mm$이었다. 단판의 등급과 합판의 강도적 성질은 원목의 성질과 깊은 관계가 있으며, 원목의 밀도는 합판의 성질을 결정하는 중요한 인자가 되었다.

  • PDF

Bending Performances of Radiata Pine Veneers and Phenol Resin-Impregnated Sheet Overlaid Plywoods by Nondestructive Evaluation (비파괴평가에 의한 라디에타소나무 단판 및 수지함침시트 표면적층 합판의 휨성능)

  • Suh, Jin-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.87-96
    • /
    • 1998
  • The bending performances were evaluated at the radiata pine plywood through veneer compositions encompassing veneer quality, ply-numbers and overlays of the high density- or medium density-phenol resin impregnated sheets (hereafter abbreviated as resin sheets) on the raw plywood. In addition, a prediction on the bending MOE of veneers and plywoods was carried out by the nondestructive testing with stresswave timer. The summarized results were as follows: I. Bending strength and bending MOE of resin sheets-overlaid plywoods in parallel surface grain direction through 5 and 7ply were increased by 13 to 45% and 17 to 34%, respectively. Resin sheets-overlay occurred an increasing effect of the strength efficiency i.e. strength perpendicular-to-grain direction versus that parallel-to-grain direction, showing the phenomenon that the plywood strength becomes greater at the perpendicular-to-grain direction of 7ply than at that of 5ply. Displacement at bending failure had a greater trend at 7ply than at 5ply, and was decreased by resin sheets-overlay. 2. After the nondestructive bending MOEs were measured for individual veneers, these veneers were rearranged in plywood-manufacture. In these plywoods, including resin sheets-overlay, the actual MOE was predictable with feasibility of $R^2$=0.53, and also the nondestructively-evaluated MOE was lower by 20% in raw plywood, and higher 20% in LVL than actual bending MOEs.

  • PDF

Adhesion Characteristics and Anatomic Scanning of Plywood Bonded by High Density Polyethylene (고밀도 폴리에틸렌으로 접착한 합판의 접착성질과 해부학적 관찰)

  • Han, Kie-Sun;Lee, Hwa-Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.16-23
    • /
    • 1997
  • This study was carried out to discuss feasibility of high density polyethylene(HDPE) as a new substitute for the conventional adhesives in plywood manufacture. Plywood was composed of radiata pine(Pinus radiata) and Malas(Homallium feotidium) veneers and bonded by HDPE. Adhesion characteristics and anatomical scanning has been examined through tensile-shear strength test and scanning electron microscopy(SEM). The results are as follows; 1. Optimum loading quantity was 15g/$(30.3{\times}30.3)cm^2$, and tensile-shear strength increased with the increase of loading quantity. 2. Even at the hot pressing time of 1 minute, tensile-shear strength met the value of KS(over the 7.5kgf/$cm^2$), and tensile-shear strength increased with the increase of hot pressing time. 3. Plywood composed of veneer at moisture content of 19.6% showed similar tensile-shear strength to that at air conditioned moisture content of 11.4%. 4. Under the same condition of hot pressing time, tensile-shear strength of plywood bonded by HDPE met the KS value of boil and wet test and proved the same group as phenol formaldehyde adhesive. 5. HDPE films showed mechanical adhesion through penetration into the lathe check and ray of veneer.

  • PDF

Flexural Analysis of Radiata Pine Plywood Plate for the Concrete Form by the Laminate Plate Theory (적층판이론을 적용한 Radiata Pine 콘크리트 거푸집용 합판의 휨해석)

  • Nam, Jeong-Hun;Son, Kyong-Wook;Yoon, Soon-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.36-45
    • /
    • 2004
  • The plywood for concrete form is regarded as a laminate plate composed of orthotropic materials and the flexural analysis is conducted by applying the laminate plate theory, in which the four edges of the plate is assumed to be simply supported and the concentric point lateral load is applied. The results of flexural experiment are compared with the theoretical ones. Theoretically predicted results coincide with experimental ones up to the point of deflection less than 1/4 of plate thickness. In addition, when the plywood is regarded as an isotropic plate for simple analysis, the geometric average of the elastic modulus measured in the direction parallel to the face grain (E11) and perpendicular to the face grain (E22) could be used for the elastic modulus of isotropic plate.

Effects of Treatment Methods of Fire-retardant and Layup of Treated Veneers on the Performances of Plywoods (내화약제(耐火藥劑)의 처리방법(處理方法) 및 처리단판(處理單板)의 조판형태(調板形態)가 합판(슴板)의 성능(性能)에 미치는 영향(影響))

  • Son, Jung-Il;Cho, Jae-Sung;Suh, Jin-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.39-50
    • /
    • 1999
  • This research was carried out to investigate the development of fire-retardancy treatment technology and performance evaluation of fire-retardant treated plywoods. Radiata pine, keruing, dillenia, calophyllum and terminalia veneers were treated by normal(conventional) pressure soak(NPS) and vacuum-pressure-soak(VPS) using 20% water solution of diammonium phosphate. Then, 4.8mm thick, 3ply plywoods were fabricated with combination of fire-retardant treated, untreated or water-immersion types and several composition types of radiata pine and keruing veneers, i,e. the uniform and the mixed types in species composition, and the homogenious and the alternate layer types in veneer treatment. In composed species, the retention and the treatment effects of fire-retardant chemicals III radiata pine was still greater than those of keruing. The effect of VPS treatment was larger than that of NPS treatment, however, adhesive bonding strength and bending strength of plywoods treated by these two methods were not necessarily lowered, compared to those of untreated plywood. And also, fire endurance performance of the urea melamine resin-bonded plywood was greater than that of the phenol resin-bonded plywood. In result, the appropriate combination in veneer species and layer as well as alternate fire-retardant treatments would be more efficiently available in service.

  • PDF

The Improvement of the Opacity and Printing Strength of Fancy Paper Overlaid Plywood

  • Kuo Lan-Sheng;Perng Yuan-Shing;Wang Eugene I-Chen;Yen Chen-Fa;Kao Tsuen-Han
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.91-98
    • /
    • 2006
  • The purpose of this study is to investigate the opacity and printing strength of MG paper overlaid plywood. The printing strength of ink on MG paper can be evaluated effectively by a formula $E^{*2}=[(L^{*})^{2}+(a^{*})^{2}+(b^{*})^{2}]^{1/2}$ that we proposed. Higher E value indicates good printing strength of ink-on-paper. We also assess the real color of translucent printed MG paper with a formula CIE ${\bigtriangleup}E^{*}$ (color difference between a pile of same paper to be opaque and fancy paper laminated board). In addition, the color difference on paper surface caused by the color of wood-based board (bottom) can be evaluated by a formula of Pc. No. Generally, an acceptable appearance quality of fancy boards is ${\bigtriangleup}E^{*}$ <2.0 and small Pc.No. value. The experimental results showed that Japan-made MG papers -J1, J2 and J3 have better printing strength and gloss than that of Taiwan-made paper (T1). The reason for this was that Taiwan-made paper has poor printing strength and low gloss, which might be correlated to the fiber compositions in paper. Higher printing strength can be seen for short fiber containing handsheets when comparing to that of handsheets. Nonetheless, low-freeness sheets gives better printing strength than that of high-freeness sheets. High-opacity MG paper gives good opacifying effect to the fancy paper laminated wood-based boards. Comparing the surface color of 2 kinds of fancy paper laminated boards, paperboard T1 laminated with high-opacity fancy paper showed slight color difference. The same results can be seen for $??g/m^{2}$ handsheets. Higher-opacity Acacia and Eucalyptus bleached sulfate pulps (short fiber) gives higher opacifying effect on the plywood when comparing to Northan pine and Radiata pine sulfate pulps(long fiber). The former ones also showed small color differences when comparing the color differences between the color of fancy paper and laminated paper board. Additionally, the color of bottom plywood can't be shown through for the high-opacify surface paper adhered to. Besides, the PC No of the base paper laminated board is small as well. Apparently, we can add colorants to the binders for the manufscture of various handsheets ($30g/m^{2}$) with various pulp mix ratios to increase the opacity of paperboards to certain extents. When we using yellow and brown binders in paper laminated board, the color difference between Acacia and Eucalyptus handsheets overlaid boards decreasing to 2.0 (acceptable ${\bigtriangleup}E^{*}$ <2.0, hard to discern), but not much improvement for Northern and Radiata pines. Definitely, show-through defects can be discernible for lower opacity papers. In general, admirable printing strength of fancy paper by which glued to plywood can be made with high-opacity paper and colored binders techniques.

  • PDF

Utilization of Waste Bone Powders as Adhesive Fillers for Plywood (합판용 접착제의 충전제로서 폐기 골분의 이용)

  • Ko, Jae Ho;Roh, JeongKwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.528-537
    • /
    • 2015
  • To reuse the waste bone from restaurants or butcher houses, the possibility of using waste bone powder after cooking as a filler for wood adhesives used in manufacturing plywood was investigated. Radiata pine (Pinus radiata D. Don) plywoods were manufactured by using commonly used wood adhesives such as urea-melamine formaldehyde (UMF) resin, urea-formaldehyde (UF) resin, and phenol-formaldehyde (PF) resin and the prepared fillers from cattle bone powder, pig bone powder, and seashell powder. Plywood fabricated by using cattle bone powder, pig bone powder, and seashell powder showed weaker performance in dry and wet glue-joint shear strength and wood failure than those of the plywood with wheat flour. The result showed that it was hard to use only bone powder for the replacement of wheat flour. However, the filler mixed with wheat flour and bone powders showed equivalent dry bonding strength and better water resistance than the wheat flour, indicating that bone powders mixed with wheat flour might be used for the manufacture of plywood. When bone powders were mixed with wheat flour as adhesive fillers the shell powder showed the lowest bonding properties and there was no big difference between the cattle bone powder and the pig bone powder.