• Title/Summary/Keyword: Radiant burner

Search Result 25, Processing Time 0.019 seconds

A Study on the Temperature Characteristics and Flame Stabilization of Surface Combustor using the Metal Fiber (메탈화이버를 이용한 표면연소기의 화염안정화 및 온도특성에 관한 연구)

  • Lee, Jin-Seok;Lee, Young-Hoo;Yun, Bong-Seok;Lee, Do-Hyung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.92-97
    • /
    • 2002
  • By changing the excess air ratio which affects strongly to the combustion characteristics, the flame stability range in the metal fiber burner were found and the range of the blue flame male and radiant mode were distinguished by direct photography. The results in our experiments for the flame stability zone were from a=1.4($354 KW/m^2$) to a=2.06($240 KW/m^2$), and then the blue flame mode zone was form a=1.87($266 KW/m^2$) to a=2.06($240 KW/m^2$) and the radiant mode one was form a=1.4($354 KW/m^2$) to a =1.78($278 KW/m^2$). And the flame was not fired when a is less than the lean condition a=2.45($202 KW/m^2$).

  • PDF

Nitric Oxide and Carbon Monoxide Emission from a Premixed Flame Stabilized in a Porous Ceramic Matrix Burner (세라믹 매트릭스 버너에 형성된 예혼합 화염의 NOx 및 CO 배출특성)

  • Jeong, Jong-Su;Lee, Gyo-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3243-3250
    • /
    • 1996
  • Emission characteristics of nitric oxides and carbon monoxide from a porous media combustor has been experiment studied. The relationship between the change of flame shape and emission has also been examined. As the equivalence ratio decreases, the flame shape on the ceramic matrix plate changes from a diffusion flame, R(radiant)-type flame, to B(Blue)-type flame. With large fuel flow rate, R-type flame turns to be two dimensional R-II type flame around the equivalence of 0.7. Carbon monoxide emission increases very rapid with decreasing equivalence ratio. It changes a lot from some 10 ppm to 100-10,000 ppm with the change of flame type from R-I to R-II type. Nitric oxide emission from the premixed burner is less than 25 ppm over all range of fuel flow rate, which is less than 20% of NOx emission from conventional gas burners.

A Linear Stability Analysis of Unsteady Combustion of Solid Propellants (고체추진제 비-정상연소의 선형 안정성해석)

  • 이창진;김성인;변영환
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.1
    • /
    • pp.59-66
    • /
    • 1998
  • The combustion instability analysis of solid propellants is generally done by the simplified governing equations for chemically inert condensed phase region with QSHOD assumption. Since the gas phase and surface reaction layer can be more rapidly relaxed to the external perturbations than the condensed phase, these regions are treated as quasi-steady manner in the analysis. In this paper, the classical ZN(Zeldovic-Novozhilov)approach was re-examined with the presence of radiation augmented burning enhancement in the combustion. Also, the surface reaction was assumed to partially absorb the incident radiant heat fluxes and pass the remaining to the chemically inert condensed phase. As a result of the analysis, the burning rate response function was obtained which consists of a pressure response function and a radiation response function. The response function was shown to be able to predict the results of T-burner tests.

  • PDF

Combustion Characteristics and Design of Fiber Mat Catalytic Burners (매트 형태 연소촉매를 사용하는 촉매버너의 구조와 연소특성)

  • Song, Kwang-Sup;Jung, Nam-Jo;Kim, Hee-Yeon
    • Journal of Energy Engineering
    • /
    • v.17 no.2
    • /
    • pp.100-106
    • /
    • 2008
  • Flameless fiber mat catalytic burners have been known as an effective heat source in industrial drying processes since heat obtained from combustion can be transferred to absorptive body by far-infrared radiation. In order to extend the application of fiber mat catalytic burner, novel fiber mat catalytic burners were manufactured and combustion characteristics of them were investigated. For diffusive catalytic burners, the efficiency of combustion was significantly affected by the installation direction and the temperature of catalytic bed perimeter influenced on the diffusion rate of oxygen which determined the combustion efficiency of catalytic burner. It was seen in premixed catalytic combustion that air content in premixed fuel gas was optimized at slightly higher than theoretical amount of air. Combustion heat released higher than 70% by radiant heat in premixed catalytic combustion likewise diffusive catalytic combustion.

Performance Estimation of Small Regenerative Radiant Tube Burner System using High Velocity Discharge (고속분사를 이용한 소형 축열식 복사관 버너시스템의 성능평가)

  • Cho, Han-Chang;Cho, Kil-Won;Lee, Yong-Kuk
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.242-247
    • /
    • 2004
  • An Experimental study was conducted on spray combustion using dual swirlers at different outlet angle; co-swirl and counter-swirl. To understand the characteristics of turbulent spray combustion of dual swirl flow (DSF), the axial helical annular vaned swirlers with various swirl ratios and combination of angle and direction were designed. and temperature measurements of a rapidly thermocouple insertion and measurements of soot volume fraction and microrstructure using thermophoretic sampling particle diagnostic (TSPD) as TEM were carried out. The NOx, $CO_2$, $O_2$, etc. was analyzed using emission gas analyzer. The results show that flame stability were maintained under very lean condition. for both co-swirl and counter-swirl case. And though Counter-swirl case kept the higher temperature region compared to co-swirl case, Counter-swirl combustion represented less NOx emission and soot formation than co-swirl case.

  • PDF