• 제목/요약/키워드: Radial vibration forces

검색결과 47건 처리시간 0.025초

Effects of Rotor Misalignment in Airgap on Dynamic Response of an Eccentric Rotor in BLDC Motor

  • Kim, Tae-Jong;Kim, Kyung-Tae;Hwang, Sang-Moon;Park, No-Gill;Lee, Shi-Bok
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1576-1582
    • /
    • 2002
  • Vibration of a BLDC motor is a coupled phenomenon between mechanical characteristics and magnetic origins which takes place through the motor airgap. When relative misalignment of a rotor in the airgap is introduced during assembly, the dynamic characteristics of the motor system are affected. The rotor-motor system used in a washing machine is modeled using FETM and magnetic forces in a BLDC motor with radial rotor eccentricity are determined analytically The transient whirl responses of a rotor system supported on two roller bearings with relative misalignment in the motor airgap are investigated by considering mechanical and magnetic coupling effects. Results show that rotor misalignment in the airgap considerably affects the vibration of the rotor-motor system.

Synchronous Vibration Control of a Rigid Rotor System using Active Air Bearing

  • Kwon, Tae-Kyu;Qiu, Jin-Hao;Tani, Jun-Ji;Lee, Seong-Cheol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권2호
    • /
    • pp.87-94
    • /
    • 2002
  • This paper presents the synchronous vibration control of a rotor system using an Active Air Bearing(AAB). In order to suppress the synchronous vibration, it is necessary to actively control the air film pressure or the air film thickness. In this study, active pads are used to control the air film thickness. Active pads are supported by the pivots containing piezoelectric actuators and their radial positions can be actively controlled by applying voltage to the actuators. Disturbances and various kinds of external forces can cause the shaft vibration as well as the change of the air film thickness. The dynamic behaviors of a rotary system supported by two tilting-pad gas bearings and its active stabilization using the tilting-pads as actuators are investigated numerically. The PID controller is applied to the tilting-pad gas bearing system with three pads, two of which contain piezoelectric actuators. To test the validity of the theoretical method, the performance of this control method is evaluated through experiments. The experimental results show the effectiveness of the control system for suppressing the unbalanced response of the rigid modes.

Numerical prediction of pressure pulsation amplitude for different operating regimes of Francis turbine draft tubes

  • Lipej, Andrej;Jost, Dragica;Meznar, Peter;Djelic, Vesko
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.375-382
    • /
    • 2009
  • Hydraulic instability associated with pressure fluctuations is a serious problem in hydraulic machinery. Pressure fluctuations are usually a result of a strong vortex created in the centre of a flow at the outlet of a runner. At every radial turbine and also at every single regulating axial turbine, the draft tube vortex appears at part-load operating regimes. The consequences of the vortex developed in the draft tube are very unpleasant pressure pulsation, axial and radial forces and torque fluctuation as well as turbine structure vibration. The consequences of the vortex are transferred upstream and downstream with amplitude and frequency modulation in respect of the turbine operating regime, cavitation conditions and air admitted content. Numerical prediction of the vortex appearance in the design stage is a very important task. The amplitude of the pressure pulsation is different for each operating regime therefore the main goal of this research was to numerically predict pressure pulsation amplitude versus different guide vane openings and to compare the results with experimental ones. For the numerical flow analysis of a complete Francis turbine (FT), the computer code ANSYS-CFX11 has been used.

VIRTUAL PREDICTION OF A RADIAL-PLY TIRE'S IN-PLANE FREE VIBRATION MODES TRANSMISSIBILITY

  • CHANG Y. P.;EL-GINDY M.
    • International Journal of Automotive Technology
    • /
    • 제6권2호
    • /
    • pp.149-159
    • /
    • 2005
  • A full nonlinear finite element P185/70Rl4 passenger car radial-ply tire model was developed and run on a 1.7-meter-diameter spinning test drum/cleat model at a constant speed of 50 km/h in order to investigate the tire transient response characteristics, i.e. the tire in-plane free vibration modes transmissibility. The virtual tire/drum finite element model was constructed and tested using the nonlinear finite element analysis software, PAM-SHOCK, a nonlinear finite element analysis code. The tire model was constructed in extreme detail with three-dimensional solid, layered membrane, and beam finite elements, incorporating over 18,000 nodes and 24 different types of materials. The reaction forces of the tire axle in vertical (Z axis) and longitudinal (X axis) directions were recorded when the tire rolled over a cleat on the drum, and then the FFT algorithm was applied to examine the transient response information in the frequency domain. The result showed that this PI 85/70Rl4 tire has clear peaks of 84 and 45 Hz transmissibility in the vertical and longitudinal directions. This result was validated against more than 10 previous studies by either theoretical or experimental approaches and showed excellent agreement. The tire's post-impact response was also investigated to verify the numerical convergence and computational stability of this FEA tire model and simulation strategy, the extraordinarily stable scenario was confirmed. The tire in-plane free vibration modes transmissibility was successfully detected. This approach was never before attempted in investigations of tire in-plane free vibration modes transmission phenomena; this work is believed to be the first of its kind.

판 스프링 패드 공기베어링 성능에 관한 실험적 연구 (An Experimental Study on Performances of Leaf Spring Pad Air Bearing)

  • 이희락;제양규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.94-99
    • /
    • 2003
  • As the rotating speed of rotors is increased, the instability and power loss become serious problems. Gas bearings are introduced as a good solution to those problems. But in the development of gas bearings, high load capacity and high damping force to vibrations are required. In this study a new air bearing using leaf spring pad is introduced to improve load capacity and damping force. The experimental results of the leaf spring pad air bearings show high load capacity and high damping forces. And the results show that leaf spring pad air bearings can be simultaneously acted as radial and thrust bearings

  • PDF

Dynamic Analysis of Rotor Eccentricity in Switched Reluctance Motor with Parallel Winding

  • Li, Jian;Choi, Da-Woon;Cho, Yun-Hyun
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 추계학술대회 논문집
    • /
    • pp.85-87
    • /
    • 2008
  • This paper presents dynamic characteristics in Switched Reluctance Motor (SRM) with rotor eccentricity and proposes the reduction method of rotor eccentricity effects by the different winding connections. These characteristics investigations are computed by 2D transient magnetic FEM analysis coupled with external circuits. The radial and unbalance magnetic force in the stator, which is the main exciting force of the vibration, is calculated using Maxwell stress method and compared with the performance characteristics according to the serial and parallel connections of windings. The influence of winding method counteracting unbalance forces on the rotor vibration behavior is estimated by the current waveforms of the paralleled paths under rotor eccentricity.

  • PDF

탱크로리에서의 유체-고체 연성거동특성연구 (A Study on the characteristics of fluid-solid coupling behavior of the tanker-lorry)

  • 김현수;이영신
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.1097-1100
    • /
    • 2004
  • In this study the fluid-solid coupling(sloshing) behavior of the tanker-lorry during turning are investigated numerically. The ALE numerical method is used as sloshing analysis algorithm and numerical simulation is conducted for the various fluid filling height 25%, 50% and 75%. The forces for radial and vertical direction are calculated and compared for various fluid-filling heights. From the analysis results, in case of 25% filling, the sloshing effect is the most highest.

  • PDF

회전자 편심을 가지는 IPM, SPM 전동기 진동 특성 비교: (1) 영구 자석에 의한 전자기력 (Comparison of Vibration Characteristics in IPM and SPM BLDC Motors with Rotor Eccentricity : (1) Electro-magnetic Force Due to PM)

  • 황근배;김경태;황상문
    • 한국소음진동공학회논문집
    • /
    • 제11권9호
    • /
    • pp.454-461
    • /
    • 2001
  • Acoustic noise and vibration of a BLDC motor is a coupled phenomenon between mechanical characteristics and electromagnetic origins through the motor air-gap. When a relative misalignment of rotor in the air-gap center exists on the assemblage, it is considered to influence the motor system characteristics. In this paper, the back electro motive force(BEMF) is analyzed by Finite Element Method(FEM) and verified by experiments for the SPM and IPM type motors. For magnetic field analysis, a FEM is used to account for the magnetic saturation. Using these results, the FEM is made to determine the appropriate electromagnetic field analysis in BLDC motors with rotor eccentricity ratio. A radial magnetic imbalance force of BLDC motor with rotor eccentricity is analyzed. Results demonstrate that the imbalance force is increased according to the degree of misalignment. An IPM motor, mostly chosen to realize high-speed operation, shows a worse effect on magnetic unbalanced forces and dynamic responses compared with SPM motor due to magnetic saturation when the rotor eccentricity exists.

  • PDF

정하중을 받는 승용차 타이어의 진동특성에 관한 연구 (A study on vibration characteristics of passenger car tire under the static load)

  • 문일동;이태근;홍동표;김병삼
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.14-22
    • /
    • 1995
  • We treat the vibrations of circular beam and make use of the method employed by J.T.Tielking, which is based on the principle of Hamilton. The Hamilton's principle requires the determinations of the potential and the kinetic energy of the model as well as done by internal pressure forces. Thje potential energy is composed of a part due to elastic deformations of the beam and a part due to radial and tangential displacements of the tread band with respect to the wheel rim. The equations of motion for such a model are derived by reference to conventional energy method. The accuracy of the expressions is demonstrated by comparison of calculated and experimental natural frequencies for circular beam. The circular beam experiences a harmonic, radial excitat- ion acting at a fixed point on the beam. Modal parameters varying the inflation pressure and load are determined experimentally by using the transfer function method.

  • PDF

회전하는 타이어의 접지면 동특성 예측에 관한 연구 (A Study on Slow Rolling tire for Prediction of the Tire Forces and Moments)

  • 김항우;황갑운;조규종
    • 전산구조공학
    • /
    • 제10권2호
    • /
    • pp.161-169
    • /
    • 1997
  • 차량의 동적특성, 즉 소음, 진동, 승차감 및 조종안정성능 등에 중요한 영향을 미치는 부품중에 하나로 차체의 중량을 지지하고 노면과 접촉하여 회전하면서 조타성을 지니는 타이어를 고려하지 않을 수 없다. 지금까지의 이러한 타이어 최적설계에 이용되어지고 있는 예측기법으로는 유한요소해석 방법이 널리 활용되어 지고 있으나, 이는 타이어에 공기압 주입 및 차량의 조종안정성능이 우수한 타이어 제품개발 및 개선을 위해 차량 주행시 타이어와 노면과의 접지면에 작용하는 힘과 모멘트를 예측할 수 있는 유한요소해석 적용기법을 개발하였으며,이러한 해석기법을 통한 결과와 실측치는 매우 유사한 관계를 지니고 있음을 알 수 있었다.

  • PDF