• 제목/요약/키워드: Radial stress

검색결과 417건 처리시간 0.025초

무요소법(RPIM)을 이용한 구조 요소의 응력해석 (The Stress Analysis of Structural Element Using Meshfree Method(RPIM))

  • 한상을;양재근;주정식
    • 한국전산구조공학회논문집
    • /
    • 제20권3호
    • /
    • pp.311-319
    • /
    • 2007
  • 본 연구에서는 구조 요소의 응력해석을 위한 무요소 RPIM(Meshfree Radial Point Interpolation Methods)법을 제시한다. 이를 위하여 먼저 무요소법의 형상함수와 무요소 RPIM법의 정식화 과정 및 프로그래밍을 간략히 한다. 절점보간법은 방사기저함수와 다항기저함수를 포함하고 있고 이 중 다항기저함수는 특이성문제를 극복할 수 있다. 게다가 무요소 RPIM법의 보간함수는 영향영역의 절점을 통과하고 형상함수는 크로네커 델타 성질을 갖고 있으므로 최소자승법에 기반을 둔 무요소법보다 쉽게 필수경계조건을 만족시킨다. 본 연구의 정확성을 확인하기 위하여, 캔틸레버형 평판, 유공평판, 속이 빈 원통 문제의 수치예제를 수행하고 이론 해와 유한요소법 결과를 비교, 분석한다.

고속가공에서 미시적 정밀도의 특성 평가 (Characteristic evaluation of microscopic precision in high speed machining)

  • 김철희;김전하;강명창;김정석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.352-357
    • /
    • 2001
  • In this study, residual stress was investigated to evaluate damaged layer in high speed machining through simulation. In machining steel(STDll), residual stress remaining in machined surface was mainly appeared as compressive stress. The scale of this damaged layer more depends on feed per tooth and radial depth than spindle speed. Damaged layer was measured by optical microscope and hardness method. The micro-structure of damaged layer was a martensite because of cutting force and cutting temperature. Thickness of damaged layer is increased with incresing of feed per tooth and radial depth.

  • PDF

롤투롤 와인딩 시스템에서 테이퍼 장력과 감김롤 응력분포에 관한 연구 (Effect of Taper Tension Profiles on Radial Stress of a Wound Roll in Roll-to-roll Winding Process)

  • 이창우
    • 한국정밀공학회지
    • /
    • 제31권2호
    • /
    • pp.125-131
    • /
    • 2014
  • Winding is an integral operation in almost every roll-to-roll continuous process and center-winding is suitable and general scheme in the winding system. However, the internal stresses within center-wound rolls can cause damage such as buckling, spoking, cinching, etc. It is therefore necessary to analyze the relationship between taper tension in winding section and internal stress distribution within center-wound roll to prevent the winding failure. In this study, an optimal taper tension control method with parabolic taper tension profile for producing high quality wound roll was developed. The new logic was designed from analyzing the winding mechanism by using the stress model in center-wound rolls. The performance of the proposed taper tension profile was verified experimentally.

고속 엔드밀 가공에서 가공변질층의 특성 (Characteristics of damaged layer in high speed end milling)

  • 김동은
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.326-331
    • /
    • 2000
  • In this study, residual stress was investigated experimentally to evaluate damaged layer in high-sped machining. In machining difficult-to-cut material, residual stress remaining in machined surface was mainly speared as compressive stress. The scale of this damaged layer depends upon cutting speed, feed per tooth and radial cutting depth. Damaged layer was measured by optical microscope. The micro-structure of damaged layer was a mixed maternsite and austenite. depth of damaged layer is increased with increasing of cutting temperature, cutting force and radial depth. On the other hand, that is slightly decreased with decreasing of cutting force. The increase of tool wear causes a shift of the maximum residual stress in machined surface layer.

  • PDF

Static analysis of laminated piezo-magnetic size-dependent curved beam based on modified couple stress theory

  • Arefi, M.
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.145-153
    • /
    • 2019
  • Modified couple stress formulation and first order shear deformation theory are used for magneto-electro-elastic bending analysis of three-layered curved size-dependent beam subjected to mechanical, magnetic and electrical loads. The governing equations are derived using a displacement field including radial and transverse displacements of middle surface and a rotation component. Size dependency is accounted based on modified couple stress theory by employing a small scale parameter. The numerical results are presented to study the influence of small scale parameter, initial electric and magnetic potentials and opening angle on the magneto-electro-elastic bending results of curved micro beam.

적응적 세분화 방법을 이용한 무요소법의 응력 해석에 관한 연구 (A Study on the Adaptive Refinement Method for the Stress Analysis of the Meshfree Method)

  • 한상을;강노원;주정식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.8-13
    • /
    • 2008
  • In this study, an adaptive node generation procedure in the radial point interpolation method is proposed. Since we set the initial configuration of nodes by subdivision of background cell, abrupt changes of inter-nodal distance between higher and lower error regions are unavoidable. This unpreferable nodal spacing induces additional errors. To obtain the smoothy nodal configuration, it's regenerated by local Delaunay triangulation algorithm This technique was originally developed to generate a set of well-shaped triangles and tetrahedra. To demonstrate the performance of proposed scheme, the results of making optimal nodal configuration with adaptive refinement method are investigated for stress concentration problems.

  • PDF

MCST bending formulation of a cylindrical micro-shell based on TSDT

  • Mohammad Arefi
    • Earthquakes and Structures
    • /
    • 제26권4호
    • /
    • pp.299-309
    • /
    • 2024
  • The present paper develops application of third-order shear deformation theory (TSDT) and modified couple stress theory (MCST) to size-dependent bending analysis of a functionally graded cylindrical micro-shell. The radial and axial displacement components are described based on TSDT for more accurate analysis. The effect of small scales is accounted based on MCST. The principle of virtual work is used for derivation of bending governing equations. The solution is presented for a simply-supported boundary condition to account the influence of various important parameters such as micro length scale parameter, in-homogeneous index and some dimensionless geometric parameters such as length to radius and length to thickness ratios on the bending results. A comparative analysis is presented to examine the effect of order of employed shear deformation theory on the axial and radial displacements.

유한요소 해석을 통한 레이디얼 빔 커플링의 설계인자 분석 (Design Parametric Analysis of Radial Beam Coupling using Finite Element Analysis)

  • 이치범;박영일
    • 한국정밀공학회지
    • /
    • 제30권5호
    • /
    • pp.537-543
    • /
    • 2013
  • In this paper, a novel radial beam coupling model was proposed and the design parameters were studied for the efficient transmission of torque. To develop a high performance radial beam coupling, an analytical way to predict the performance in design phase is required. One of the best ways to estimate the performance of the coupling without manufacturing is to evaluate the stress and torsional stiffness by building a finite element model with a special attention to the radial beam cutting part. For the best results of FEA, the material properties were obtained through testing. To verify the reliability of finite element model, the results of FEA were compared with the experiments. The main design parameters of radial beam cutting width, radial beam cutting depth, and radial beam cutting direction were considered for the performance of radial beam coupling.

강자성 배관 외.내부 면의 이중 원형 결함의 깊이와 응력이 누설자속에 미치는 영향 (Effect of Double Circular Pit Depth and Stress on Far and Near-side Magnetic Flux Leakage at Ferromagnetic Pipeline)

  • 유권상;박영태;손대락
    • 한국자기학회지
    • /
    • 제13권2호
    • /
    • pp.76-81
    • /
    • 2003
  • 매설된 송유관이나 가스관의 외부면과 내부면에 생성된 원형 결함(double circular pit) 부근에서 누설되는 자속 신호에 미치는 결함깊이와 인장응력(tensile stress)의 영향을 3차원 유한요소법을 이용하여 계산하였다. 배관의 축 및 방사상 방향의 누설자속 (Magnetic Flux Leakage: MFL) 신호는 배관 외$.$내부 면의 이중 결함깊이와 인장응력에 의해 영향을 받으며, 결함의 깊이가 깊어질수록 인장응력이 커질수록 MFL 신호는 증가하였다. 그러나 원주 방향의 MFL 신호는 결함깊이와 인장응력에 거의 영향을 받지 않았다.

The Wall Shear Rate Distribution Near an End-to-End Anastomosis : Effects of Graft Compliance and Size

  • Rhee, Kye-Han
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제1권1호
    • /
    • pp.41-47
    • /
    • 2003
  • The patency rates of small diameter vascular grafts are disappointing because of the formation of thrombus and intimal hyperplasia. Among the various factors influencing the success of graft surgery, the compliance and the size of a graft are believed to be the most important physical properties of a vascular graft. Mismatch of compliance and size between an artery and a graft alters anastomotic flow characteristics, which may affect the formation of intimal hyperplasia. Among the hemodynamic factors influencing the development of intimal hyperplasia, the wall shear stress is suspected as the most important one. The wall shear stress distributions are experimentally measured near the end-to-end anastomosis models in order to clarify the effects of compliance and diameter mismatch on the hemodynamics near the anastomosis. The effects of radial wall motion, diameter mismatch and impedance phase angle on the wall shear rate distributions near the anastomosis are considered. Compliance mismatch generates both different radial wall motion and instantaneous diameter mismatch between the arterial portion and the graft portion during a flow cycle. Mismatch in diameter seems to be affecting the wall shear rate distribution more significantly compared to radial wall motion. The impedance phase angle also affects the wall shear rate distribution.

  • PDF