• Title/Summary/Keyword: Radial pattern

Search Result 273, Processing Time 0.026 seconds

Design of Echo Classifier Based on Neuro-Fuzzy Algorithm Using Meteorological Radar Data (기상레이더를 이용한 뉴로-퍼지 알고리즘 기반 에코 분류기 설계)

  • Oh, Sung-Kwun;Ko, Jun-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.676-682
    • /
    • 2014
  • In this paper, precipitation echo(PRE) and non-precipitaion echo(N-PRE)(including ground echo and clear echo) through weather radar data are identified with the aid of neuro-fuzzy algorithm. The accuracy of the radar information is lowered because meteorological radar data is mixed with the PRE and N-PRE. So this problem is resolved by using RBFNN and judgement module. Structure expression of weather radar data are analyzed in order to classify PRE and N-PRE. Input variables such as Standard deviation of reflectivity(SDZ), Vertical gradient of reflectivity(VGZ), Spin change(SPN), Frequency(FR), cumulation reflectivity during 1 hour(1hDZ), and cumulation reflectivity during 2 hour(2hDZ) are made by using weather radar data and then each characteristic of input variable is analyzed. Input data is built up from the selected input variables among these input variables, which have a critical effect on the classification between PRE and N-PRE. Echo judgment module is developed to do echo classification between PRE and N-PRE by using testing dataset. Polynomial-based radial basis function neural networks(RBFNNs) are used as neuro-fuzzy algorithm, and the proposed neuro-fuzzy echo pattern classifier is designed by combining RBFNN with echo judgement module. Finally, the results of the proposed classifier are compared with both CZ and DZ, as well as QC data, and analyzed from the view point of output performance.

A study on floating and sinking pulse by classification of pulse pattern through analysis of P-H volume-curve at 5 applied pressure levels (5단계 가압에 대한 맥파 변화 분석에 의한 맥 패턴 분류와 부침맥(浮沈脈) 연구)

  • Kown, Sun-Min;Kang, Hee-Jung;Yim, Yun-Kyoung;Lee, Yong-Heum
    • Korean Journal of Acupuncture
    • /
    • v.27 no.1
    • /
    • pp.13-22
    • /
    • 2010
  • Objectives: The information on the depth where pulse wave appears is as important as pulse waveform. The aim of this study was to classify pulse pattern using pressure-height(P-H) volume-curve by 5 applied pressure levels to find out the information on the depth of pulse and interpret the floating & sinking pulse in oriental medical pulse diagnosis. Methods: We used 3 dimensional pulse imaging analyser (DMP-3000, DAEYOMEDI Co., Korea), which measures radial pulse waveforms noninvasively by way of tonometric method at 5 applied pressure levels, and shows P-H volume-curves by applied pressure. 448 subjects were enrolled, pulse waveforms were measured and the P-H volume-curves were gained on the three locations of Chon, Kwan, and Cheok. Results: Gained P-H volume curves were classified into 3 types ; increase type, decrease type, and increase-decrease type. Increase-decrease type appeared more often on Chon and Kwan, while increase type appeared more often on Cheok. In a few cases, decrease-type appeared on Chon and Kawn, however it never appeared on Cheok. Conclusions: Through the classification of pulse by P-H volume-curve, we gained the information on the depth of pulse. We speculate the decrease type as floating pulse, the increase-decrease type as middle pulse, and the increase type as sinking pulse in oriental medical pulse diagnosis. After more researches on P-H volume-curve by applied pressure, the P-H volume-curve may be used as an important factor for pulse diagnosis.

Visual Inspection of Tube Internal

  • Choi, Young-Soo;Cho, Jai-Wan;Kim, Chang-Hoi;Seo, Yong-Chil;Kim, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.789-792
    • /
    • 2003
  • Pipe inspection has a great importance to ensure safety for the nuclear power plant. In this paper, we designed visual inspection module for the tube internal, which diameter is 15${\sim}$20mm. And we made inspection module which consisted of CCD camera and light. And the relation between image and real world coordinate is established. Image processing is performed to calculate mapping parameter and analyze the size of defect. For the calculation of mapping parameter, experiment is performed using grid type test pattern. Acquired image is processed to extract image coordinate. Edge detection, thresholding, median filtering and morphology filtering is applied to extract grid pattern. Extracted image coordinate is used to calculate image to real world mapping. Lens distortion was considered and corrected to get exact data. Coordinate transformation data is provided for the users to recognize easily. Experiment was performed using grid type test pattern, we extracted lens distortion parameter and real coordinate of defect point. Radial distortion of lens was corrected but tangential distortion was not considered. As continuum to this study, the tangential distortion of lens is considered and improvement of analy zing technique for the tube internal be explored continuously.

  • PDF

Analysis on Spray Pattern of Airless Tip for Heavy Duty Coating Using Particle Image Velocimetry (PIV를 이용한 중방식 도장용 에어리스 팁의 분사패턴 분석)

  • Yoon, Soon-Hyun;Choi, Hyo-Sung;Kim, Dong-Keon;Kim, Bong-Hwan;Cho, Seung-Wan
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.177-184
    • /
    • 2014
  • Heavy duty coating is playing an important role in the field of heavy industry in the development of the shipbuilding and plant industries. Heavy duty coating has the very important function of protecting steel under serious corrosive conditions. The airless tip used for heavy duty coating is an essential part that determines the spray pattern of the paint. This research investigated the injection properties of three airless tips(numbers 521, 523, and 525) by using particle image velocimetry(PIV). The velocity and turbulent intensity according to pressure change with each tip type were investigated by using PIV. If the pressure is greater, the turbulent intensity becomes stronger and the break up of particles becomes bigger as the tip number gets smaller. The velocity is the fastest in the center and decreases in the radial direction.

The Study on PRAT Performance due to Tire Pattern Shapes using Steady State Rolling Analysis Method (정상 상태 롤링 해석 기법 적용을 통한 타이어 패턴 형상에 따른 PRAT 특성 연구)

  • Sung, Ki-Deug;Park, Hyun-Man;Koo, Byong-Kook;Cho, Choon-Tack
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.15-21
    • /
    • 2008
  • It is generally known that the PRAT(Plysteer Residual Aligning Torque) is one of indicating a performance factors of a tire for assessing the vehicle pull, also tire pattern shape, which means lateral groove angle, is very important tire design factor in relation to the PRAT. Lateral grooves of tire pattern are widely divided into center and shoulder parts. So, this paper has studied the correlation between the PRAT and their lateral groove angles using FEM. Especially, the steady state rolling analysis among tire rolling analysis methods has been used for the PRAT performance study. Firstly, analysis result data have been compared with the experimental data to validate FE analysis for PRAT. Next, the PRAT due to the lateral groove angle about PCR(Passenger Car Radial) tire and SUV tire has been analyzed. The tendency of the PRAT due to the lateral groove angles can be used as a guide line for the tire design in relation to vehicle pull.

Injection of an Intermediate Fluid into a Rotating Cylindrical Container Filled with Two-layered Fluid

  • Na, Jung-Yul;Hwang, Byong-Jun
    • Journal of the korean society of oceanography
    • /
    • v.31 no.4
    • /
    • pp.173-182
    • /
    • 1996
  • A median-density fluid was injected into the upper layer of a two-layered fluid in a rotating cylindrical container. Several sets of the top and bottom boundary configurations were employed and the flow pattern of each layer including the injected fluid was observed to determine the factors that affect the path of the injected intermediate fluid. The axisymmetric path of the intermediate fluid when the upper layer had a free surface, changed into the asymmetric path with bulged-shape radial spreading whenever either the upper layer or the lower layer had ${\beta}$-effect. The internal Fronds number that controls the shape of the interface turned out to be the most important parameter that determines the radial spreading in terms of location and strength. When the upper and lower layer had the ${\beta}$-effect, convective overturning produced anticyclonic vortices at the frontal edge of the intermediate fluid, and that could enhance the vertical mixing of different density fluids. The intermediate fluid did not produce any topographic effect on the upper-layer motion during its spreading over the interface, since its thickness was very small. However, its anticyclonic motion within the bulged-shape produced a cyclonic motion in the lower layer just beneath the bulge.

  • PDF

Velocity Field Measurement of Flow Around an Axial Fan Using a Phase Averaged 2-Frame PTV Technique (위상평균 PTV 기법을 이용한 축류 홴 주위 유동의 속도장 측정 연구)

  • Choi, Jay-Ho;Kim, Hyoung-Bum;Lee, Sang-Joon;Lee, In-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.114-123
    • /
    • 2000
  • The flow structure around a rotating axial-fan was experimentally investigated using a phase averaging velocity field measurement technique. The fan blades were divided into 4 different phases, for which 500 velocity fields were acquired for each phase angle with a 2-frame PTV system. Velocity field measurements were also carried out at two planes parallel to the axis of rotation, with offsets toward the radial direction of the fan. For accurate synchronization of the PTV system with the phase of the axial fan, two synchronization circuits were employed with a photo-detector attached to the rotating shaft. The phase averaged velocity fields show periodic variations with respect to the blade phase. The periodic formation of vortices at the blade tip is also observed in vorticity contour plots. Locations of local maximum turbulence intensities in the axial and radial directions are found to be located in an alternating pattern. These experimental results can be used to validate numerical calculations and to understand the flow characteristics of an axial fan.

A Study on Cutting Force Measurement Using a Cylindrical Capacitive Spindle Sensor (주축 변위 센서를 이용한 절삭력 측정에 관한 연구)

  • 김일해;장동영;한동철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.17-23
    • /
    • 2002
  • A cylindrical capacitance-type spindle displacement sensor was developed and its effectiveness as a system to monitor cutting forces during hard turning was tested in this research. The sensor was installed between the face of spindle cover and the chucking element and measured pure radial motion of the spindle under the condition with presence of roundness error at measured surface. To prove the effectiveness of the developed system hard aiming tests using ceramic inserts and tool steel as workpiece were conducted. The workpiece was hardened up to 65 Rc. The variations of pure radial motion of the spindle ware measured during the cutting tests. The signals from the sensor showed the same pattern of cutting force variations from the tool dynamometer due to the progress of tool wear. As the flank wear of the ceramic tool increased both static component of cutting forces and the amount of center shift of spindle orbit increased, Results from the research showed that the developed sensor could be utilized as an effective and cheap on-line sensing device to monitor cutting conditions and tool performance in the un-manned machining center.

Effect of Heat Flux on the Melting Efficiency and Penetration Shape in TIG Welding (TIG 용접에서 열유속이 용융효율과 용입형상에 미치는 영향)

  • Oh, Dong-Soo;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.44-50
    • /
    • 2009
  • The characteristics of arc pressure, current density and heat flux distribution are important factors in understanding physical arc phenomena, which will have a marked effect on the penetration, size and shape of a weld in TIG welding. The purpose of this study is to find out the effect of the heat flux on the melting efficiency and penetration shape in TIG welding using the results of the previous investigators. The conclusions obtained permit to draw a proper method which derived the heat flux distributions by arc pressure distribution measurements, but previous researchers calculated heat flux and current distribution with the heat intensity measurements by the calorimetry. Heat flux of Ar gas arc was concentrated at the central part and distributed low from the arc axis to the radial direction, that of He mixing arc was lower than that of Ar gas, and it was wide distributed to radial direction. That showed a similar characteristic with the Nestor's by calorimetry calculated values. Throughout heat flux drawn in this study was discussed melting efficiency and penetration shape on Ar gas and He mixing gas arc.

High Dispersion Spectra of the Young Planetary Nebula NGC 7027

  • Hyung, Siek;Lee, Seong-Jae;Bok, Jang-Hee
    • Journal of the Korean earth science society
    • /
    • v.36 no.5
    • /
    • pp.419-426
    • /
    • 2015
  • We investigated the high dispersion spectra that had been secured at the center of the planetary nebula NGC 7027 with the Bohyunsan Optical Echelle Spectrograph (BOES) on October, 20, 2009. We analyzed the forbidden lines of [OI], [SII], [OII], [NII], [ClIII], [ArIII], [OIII], [ArIV], [NeIII], [ArV], and [CaV] in the $3770-9225{\AA}$ wavelength region. The expansion velocities were derived from double Gaussian line profiles of the emission lines, after eliminating the subsidiary line broadening effects. The radial variations of the expansion velocities were obtained by projecting the derived expansion velocities: $19.56-31.93kms^{-1}$ onto the equatorial shell elements of the inner and the outer boundaries of the main shell of 2.5(2.1)" and 3.8(3.6)", according to the ionization potential of each ion. Analysis of equatorial shell spectra indicated that the equatorial shell generally expands in an accelerated velocity mode, but the expansion pattern deviates from a linear velocity growth with radial distance. NGC 7027, of which age is about 1000 years or less, might be still at its early stage. During the first few hundred years, plausibly in its early stage, the main shell of PN expands very slowly and, later, it gradually gain its normal expansion speed.