• 제목/요약/키워드: Radial flux

검색결과 210건 처리시간 0.022초

Switched Reluctance Motor의 자기적 구조에 대한 비교 해석 (Comparison and Analysis on magnetic structures of Switched Reluctance Motors)

  • 오석규
    • 한국정보통신학회논문지
    • /
    • 제20권1호
    • /
    • pp.131-141
    • /
    • 2016
  • SRM은 저비용, 간단한 자기구조, 넓은 운전속도, 높은 효율, 직류전원과의 우수한 결합성 등의 장점을 가진 전동기구이다. SRM의 토오크는 자속의 방향과는 무관하여 자기구조의 배치가 유연한 특성을 가지고 있어 다양한 자기구조를 가지고 있다. 본 논문에서는 자속방향에 따라 Radial-Flux SRM와 Axial-Flux SRM로 크게 나누었고 기계적인 구조의 차이에 따라 Radial-Flux SRM에는 Conventional, Segmented stator and rotor, Double stator SRM 로, 그리고 Axial-Flux SRM에는 C-core stator와 Axial-airgap SRM로 분류하였고 각각에 대해 비교 해석하여 적절한 용도에 최적의 자기구조를 선택할 수 있도록 각각의 기본적인 특성을 제시하였다.

반경방향-축방향 일체형 4극 전자기 베어링의 설계 (I) - 바이어스 자속 독립형 - (Design of Combined Radial and Axial 4-pole Electromagnetic Bearing (I) - with Uncoupled Bias Flux -)

  • 김하용;김승종
    • 대한기계학회논문집A
    • /
    • 제29권12권
    • /
    • pp.1561-1566
    • /
    • 2005
  • In this paper, a new compact active magnetic bearing(AMB) is proposed in which radial and axial bearings are integrated in one bearing unit. It consists of four U-shaped cores circumferentially connected by yokes and two-layer coils for radial and axial controls. For the radial control action, it has the same principle as conventional homopolar AMBs, while for the axial control, it uses the Lorentz force generated by the interaction of the bias flux for radial control and the axial control flux. The proposed structure makes it easy to design a compact AMB because it has no disk for axial control. This paper introduces the proposed structure, principle, and design process based on the magnetic flux analysis. By using a control algorithm with feedforward action to compensate the coupled flux effect, the feasibility of the proposed AMB is experimentally verified.

반경방향-축방향 일체형 4극 전자기 베어링의 설계 (II) - 바이어스 자속 공유형 - (Design of Combined Radial and Axial 4-pole Electromagnetic Bearing (II) - with Coupled Bias Flux -)

  • 김하용;김승종
    • 대한기계학회논문집A
    • /
    • 제29권12권
    • /
    • pp.1567-1573
    • /
    • 2005
  • This paper introduces a new active magnetic bearing(AMB) that can provide both radial and axial control functions in one bearing unit without axial disk. It has a structure of double four-pole AMB or a four-pole AMB where each core is split into two axially. The cores have two kinds of coil winding; they independently generate fluxes on the planes perpendicular or parallel to the shaft. For the radial control action, it works just like a conventional four-pole AMB. Meanwhile, for the axial control, it uses the Lorentz force generated by the interaction of the bias flux for radial control and the axial control flux. In this paper, the proposed structure, principle, and design process based on magnetic flux analysis are introduced, and its feasibility is experimentally verified by using a simple PD control algorithm with a feedforward loop to compensate the coupled flux effect.

A Method for Indentifying Broken Rotor Bar and Stator Winding Fault in a Low-voltage Squirrel-cage Induction Motor Using Radial Flux Sensor

  • Youn, Young-Woo;Hwang, Don-Ha;Sun, Jong-Ho;Kang, Dong-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.666-670
    • /
    • 2011
  • In this paper, a method for detecting broken rotor bar and stator winding fault in a low voltage squirrel-case induction motor using an air-gap flux variation analysis is proposed to develop a simple and low cost diagnosis technique. To measure the leakage flux in radial direction, a radial flux sensor is designed as a search coil and installed between stator slots. The proposed method is able to identify two kinds of motor faults by calculating load condition of motors and monitoring abnormal signals those are related with motor faults. Experimental results obtained on 7.5kW three-phase squirrel-cage induction motors are discussed to verify the performance of the proposed method.

A Study of the Development of a Radial Pleat Module for Low Pressure Using an Ultrafiltration Membrane

  • Seo, Il-Gun;Shin, Se-Jong;Byoung-Ryul;Song, Hee-Yeol
    • Korean Membrane Journal
    • /
    • 제4권1호
    • /
    • pp.7-11
    • /
    • 2002
  • A radial pleat module using a polysulfone membrane was developed. The permeation characteristics of the radial pleat module were compared with those of a flat plate module. The average module efficiency of the radial pleat module for the applied pressure range was 82% and was always greater than that of the spiral wound module. For the radial pleat module, in general, as the applied pressure increases, the flux increases and the rejection reduces. The concentration polarization causes the decrease of the flux for the long time operation. But it has been found that the radial pleat module is more efficient for the reduction of the concentration polarization because it has the more effective area per unit volume and can induce the turbulent flow in the module.

Dipole Model to Predict the Rectangular Defect on Ferromagnetic Pipe

  • Suresh, V.;Abudhair, A.
    • Journal of Magnetics
    • /
    • 제21권3호
    • /
    • pp.437-441
    • /
    • 2016
  • Dipole model based analytical expression is proposed to estimate the length and depth of the rectangular defect on ferromagnetic pipe. Among the three leakage profiles of Magnetic Flux Leakage (MFL), radial and axial leakage profiles are considered in this work. Permeability variation of the specimen is ignored by considering the flux density as close to saturation level of the inspected specimen. Comparing the profile of both the components, radial leakage profile furnishes the better estimation of defect parameter. This is evident from the results of error percentage of length and depth of the defect. Normalized pattern of the proposed analytical model radial leakage profile is good agreement with the experimentally obtained profile support the performance of proposed expression.

Comparison of the radial velocities of Halo CMEs based on a flux rope model and an ice cream cone model

  • Kim, Tae-Hyeon;Moon, Yong-Jae;Na, Hyeon-Ock
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.95.1-95.1
    • /
    • 2011
  • Halo Coronal Mass Ejections (HCMEs) are crucial for space weather, since they can produce severe geomagnetic storms when they interact with the Earth's magnetosphere. It is thus very important to infer their directions, radial velocities, and their three-dimensional structures. In this study, we apply two different models to HCMEs since 2008 : (1) an ice cream cone model by Xue et al (2005) using SOHO/LASCO data, (2) a flux rope model by Thernisien et al. (2009) using STEREO/SECCHI data. In addition, we use the flux rope model with zero separation angle of flux rope, which is morphologically similar to the ice cream cone model. The comparison shows that the CME radial velocities from three models have very good correlations (R>0.9) one another. We are extending this comparison to other partial halo CMEs observed by STEREO and SOHO.

  • PDF

공극 자속밀도의 공간 고조파 유입 방법을 통한 IPM type BLDC Motor의 성능 개선 (Performance Improvement of IPM-type BLDC Motor Using the Influx Method of Spatial Harmonic in Air-gap Flux Density)

  • 이광현;류진욱;허진
    • 전기학회논문지
    • /
    • 제60권4호
    • /
    • pp.739-745
    • /
    • 2011
  • This paper proposes a method for reducing the negative spatial harmonics of the radial flux density of an interior-type permanent magnet (IPM) motor. The reliability of the motor is increased by minimizing its vibrations under dynamic eccentricity (DE) state and normal state due to reduction of a negative spatial harmonics component through the influx of a zero spatial harmonics component in the radial flux density. To minimize the vibrations, optimal notches corresponding to the distribution shape of the magnetic field are designed on the rotor pole face. The variations of vibration computation by finite element method (FEM) and the validity of the analysis and rotor shape design are confirmed by vibration and performance experiments.

수치해석 방법을적용한 BLDC 전동기의 역기전력 연구 (A Study on Back EMF of BLDC Motor Using Numetical Analysis Method)

  • 김현철
    • 한국안전학회지
    • /
    • 제23권4호
    • /
    • pp.36-41
    • /
    • 2008
  • This report describes the analytical solution of back EMF for BLDC motor using numerical analysis of air gap flux density. The analysis of air gap flux density is the key to expect the performance of back EMF for the design of brushless motor. The numerical analysis and FEM analysis are performed to vary attachment of stator side or rotor side, radial flux magnetization or parallel flux magnetization, magnet arc angle in the condition of constant air gap. This results have more reliable data comparing with test result of the back EMF for 7 phase BLDC motor.

Analysis of fluctuations in ex-core neutron detector signal in Krško NPP during an earthquake

  • Tanja Goricanec;Andrej Kavcic;Marjan Kromar;Luka Snoj
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.575-600
    • /
    • 2024
  • During an earthquake on December 29th 2020, the Krško NPP automatically shutdown due to the trigger of the negative neutron flux rate signal on the power range nuclear instrumentation. From the time course of the detector signal, it can be concluded that the fluctuation in the detector signal may have been caused by the mechanical movement of the ex-core neutron detectors or the pressure vessel components rather than the actual change in reactor power. The objective of the analysis was to evaluate the sensitivity of the neutron flux at the ex-core detector position, if the detector is moved in the radial or axial direction. In addition, the effect of the core barrel movement and core inside the baffle movement in the radial direction were analysed. The analysis is complemented by the calculation of the thermal and total neutron flux gradient in radial, axial and azimuthal directions. The Monte Carlo particle transport code MCNP was used to study the changes in the response of the ex-core detector for the above-mentioned scenarios. Power and intermediate-range detectors were analysed separately, because they are designed differently, positioned at different locations, and have different response characteristics. It was found that the movement of the power range ex-core detector has a negligible effect on the value of the thermal neutron flux in the active part of the detector. However, the radial movement of the intermediate-range detector by 5 cm results in 7%-8% change in the thermal neutron flux in the active part of the intermediate-range detector. The analysis continued with an evaluation of the effects of moving the entire core barrel on the ex-core detector response. It was estimated that the 2 mm core barrel radial oscillation results in ~4% deviation in the power and intermediate-range detector signal. The movement of the reactor core inside baffle can contribute ~6% deviation in the ex-core neutron detector signal. The analysis showed that the mechanical movement of ex-core neutron detectors cannot explain the fluctuations in the ex-core detector signal. However, combined core barrel and reactor core inside baffle oscillations could be a probable reason for the observed fluctuations in the ex-core detector signal during an earthquake.