• Title/Summary/Keyword: Radial flow

Search Result 780, Processing Time 0.026 seconds

Capillary Flow in Different Cells of Metasequoia glyptostroboides, Anthocephalus cadamba, and Fraxinus rhynchophylla (메타세콰이어, 카담, 물푸레나무 세포내강의 액체이동)

  • Chun, Su Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • A study was carried out to observe the 1% aqueous safranine solution flow speed in longitudinal and radial directions of softwood Metasequoia glyptostroboides, diffuse-porous wood Anthocephalus cadamba and ring-porouswood Fraxinus rhynchophylla. In radial direction, ray cells and in longitudinal direction, tracheids, vessel and wood fiber were considered for the measurement of liquid penetration speed at less than 12% moisture contents (MC). The length, lumen diameter, pit diameter, end wall pit diameter and the numbers of end wall pits determined for the flow rate. The liquid flow in the those cells was captured via video and the capillary flow rate in the ones were measured. Vessel in hardwood species and tracheids in softwood was found to facilitate prime role in longitudinal penetration. Anatomical features like the length and diameter, end-wall pit numbers of ray parenchyma were found also responsible fluid flow differences. On the other hand, vessel and fiber structure affected the longitudinal flow of liquids. Therefore, the average liquid penetration depth in longitudinal tracheids of Metasequoia glyptostroboides was found the highest among all cells considered in Anthocephalus cadamba and Fraxinus rhynchophylla In radial direction, ray parenchyma of Metasequoia glyptostroboides was found the highest depth and the one of Fraxinus rhynchophylla was the lowest. The solution was penetrated lowest depth in the wood fiber of Fraxinus rhynchophylla. The large vessel of Fraxinus rhynchophylla was found the lowest depth among the vessels. The solutin was penetrated to the wood fiber of Anthocephalus cadamba higher than the one of Fraxinus rhynchophylla.

  • PDF

The Change of Blood Flow Velocity of Radial Artery after Linear Polarized Infrared Light Radiation near the Stellate Ganglion: Comparing with the Stellate Ganglion Block (성상신경절 부위의 직선편광 근적외선 조사 후 요골동맥에서의 혈류속도의 변화: 성상신경절 차단술과의 비교)

  • Han, Soung-Moon;Lee, Sang-Chul
    • The Korean Journal of Pain
    • /
    • v.14 no.1
    • /
    • pp.37-40
    • /
    • 2001
  • Background: It had been reported by authors that linear polarized infrared light radiation (Superizer: SL) near the stellate ganglion had a similar effect on the change of skin temperature of hand compared with the stellate ganglion block (SGB). We hypothesized that this was due to dilatation of vessels and an increased blood flow. The aim of this study was to measure the velocity of blood flow in peripheral vessels after linear polarized infrared light radiation near the stellate ganglion and to compare the effect of SL with that of SGB using local anesthetics. Methods: Forty patients whose clinical criteria were matched for the symptoms of SGB were selected for study. We radiated the stellate ganglion by linear polarized infrared light radiation and measured the blood flow of radial artery using Ultrasound Doppler blood flow meter before and after 10, 20 and 30 minutes post-radiation. After 3 days, SGB was performed using 8 ml of 1% mepivacaine to the same patient, and the radial artery blood flow was measured in the same manner. Results: The blood flow velocity was increased by 40% and 27% at 10 min and 20 min after SL and by 42% and 41% at 10 min and 20 min after SGB. However, there was no statistically significant difference in blood flow velocity between SGL and SGB. Conclusions: We could conclude that linear polarized radiation is a clinically simple and useful noninvasive therapeutic tool in clinical area.

  • PDF

Capillary Flow in Different Cells of Larix Kaempferi, Betula Davurica, Castanea crenata (일본잎갈나무, 물박달나무, 밤나무 세포내강의 액체이동)

  • Chun, Su Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.1
    • /
    • pp.88-93
    • /
    • 2017
  • A study was carried out to observe the 1% aqueous safranine solution flow speed in longitudinal and radial directions of softwood Larix kaempferi (Lamb.)Carriere, diffuse-porous wood Betula davurica Pall.. and ring-porouswood Castanea crenata S.etZ. In radial direction, ray cells and in longitudinal direction, tracheids, vessel and wood fiber were considered for the measurement of liquid penetration speed at less than 12% moisture contents (MC). The length, lumen diameter, pit diameter, end wall pit diameter and the numbers of end wall pits determined for the flow rate. The liquid flow in the those cells was captured via video and the capillary flow rate in the ones were measured. Vessel in hardwood species and tracheids in softwood was found to facilitate prime role in longitudinal penetration. Anatomical features like the length and diameter, end-wall pit numbers of ray parenchyma were found also responsible fluid flow differences. On the other hand, vessel and fiber structure affected the longitudinal flow of liquids. Therefore, the average liquid penetration depth in longitudinal tracheids of Larix kaempferi was found the highest among all cells considered in Betula davurica and Castanea crenata, In radial direction, ray parenchyma of Larix kaempferi was found the highest depth and the one of Betula davurica was the lowest. The solution was penetrated lowest depth in the wood fiber of Castanea crenata. The large vessel of Castanea crenata was found the lowest depth among the vessels. The solutin was penetrated to the wood fiber of Betula davurica higher than the one of Castanea crenata.

Investigation on the Turbulent Swirling Flow Field within the Combustion Chamber of a Gun-Type Gas Burner (Gun식 가스버너의 연소실내 난류 선회유동장 고찰)

  • Kim, Jang-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.666-673
    • /
    • 2009
  • The turbulent swirling flow field characteristics of a gun-type gas burner with a combustion chamber were investigated under the cold flow condition. The velocities and turbulent quantities were measured by hot-wire anemometer system with an X-type probe. The turbulent swirling flow field in the edge of a jet seems to cause a recirculation flow from downstream to upstream due to the unbalance of static pressure between a main jet flow and a chamber wall. Moreover, because the recirculation flow seems to expand the main jet flow to the radial and to shorten it to the axial, the turbulent swirling flow field with a chamber increases a radial momentum but decreases an axial as compared with the case without a chamber from the range of about X/R=1.5. As a result, these phenomena can be seen through all mean velocities, turbulent kinetic energy and turbulent shear stresses. All physical quantities obtained around the slits, however, show the similar magnitude and profiles as the case without a chamber within the range of about X/R=1.0.

The Effect of Swirl Number on the Flow Characteristics of Flat Flame Burner (선회도에 따른 평면 화염 버너의 유동특성)

  • Jang, Yeong-Jun;Jeong, Yong-Gi;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.997-1004
    • /
    • 2001
  • Burner of Flat Flame type expects the uniform flame distribution and NOx reduction. The characteristics of Flat Flame Burner become different according to swirl number in the burner throat. Experiments were focused on swirl effect by four types of swirler with different swirl numbers (0, 0.26, 0.6 and 1.24). It shows many different flow patterns according to swirl number using PIV(Particle Image Velocimetry) method. The flow of burner with swirler is recirculated by pressure difference between its center and outside. Recirculated air makes stable in flame, and reduced pollutant gas. In case of swirl number 0, main flow passes through axial direction. As swirl number increased, The backward flow develops in the center part of burner and Flow gas recirculates. This is caused by radial flow momentum becomes larger than axial flow by swirled air and the pressure at center drops against surrounding. As swirl number increases, the radial and axial velocity was confirmed to be larger than low swirl numbers. And turbulence intensity have similar pattern. The CTRZ(Central Toroidal Recirculation Zone) is shown evidently when y/D=1 and S=1.24. The boundary-layer between main flow and recirculated flow is shown that the width is seen to be decreased as swirl number increased.

Experimental and Computational Studies on Flow Behavior Around Counter Rotating Blades in a Double-Spindle Deck

  • Chon, Woo-Chong;Amano, Ryoichi S.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1401-1417
    • /
    • 2004
  • Experimental and computational studies were performed to determine the effects of different blade designs on a flow pattern inside a double-spindle counter rotating mower deck. In the experimental study, two different blade models were tested by measuring air velocities using a forward-scatter LDV system. The velocity measurements were taken at several different azimuth and axial sections inside the deck. The measured velocity distributions clarified the air flow pattern caused by the rotating blades and demonstrated the effects of deck and blade designs. A high-speed video camera and a sound level meter were used for flow visualization and noise level measurement. In the computational works, two-dimensional blade shapes at several arbitrary radial sections have been selected for flow computations around the blade model. For three-dimensional computation applied a non-inertia coordinate system, a flow field around the entire three-dimensional blade shape is used to evaluate flow patterns in order to take radial flow interactions into account. The computational results were compared with the experimental results.

Investigation on the Turbulent Flow Field Characteristics of a Gun-Type Gas Burner with and without a Duct (덕트의 유무에 따른 Gun식 가스버너의 난류유동장 특성 고찰)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.17-24
    • /
    • 2006
  • The turbulent flow field characteristics of a gun-type gas burner with and without a duct were investigated under the isothermal condition of non-combustion. Vectors and mean velocities were measured by hot-wire anemometer system with an X-type hot-wire probe in this paper. The turbulent flow field with a duct seems to cause a counter-clockwise recirculation flow from downstream to upstream due to the unbalance of static pressure between a main jet flow and a duct wall. Moreover, the recirculation flow seems to expand the main jet flow to the radial and to shorten it to the axial. Therefore, the turbulent flow field with a duct increases a radial momentum but decreases a axial momentum. As a result, an axial mean velocity component with a duct above the downstream range of about X/R=1.5 forms a smaller magnitude than that without a duct in the inner part of a burner, but it shows the opposite trend in the outer part.

  • PDF

A Study for a load flow analysis algorithm in the three-phase distribution network (3상 배전계통에서의 부하조류해석 알고리즘에 관한 연구)

  • Ryu, Jae-Hong;Kim, Jae-Eon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.150-152
    • /
    • 2000
  • This paper introduces an advanced three-phase load flow analysis algorithm in the radial distribution network. This method is an extension of the Novel method for solving radial distribution networks with the emphasis on expanding from single phase to three-phase. The proposed method involves only simple algebraic computation without any form of Jacobian matrix but has a desirable convergence characteristic. Computationally, The suggested technique is very efficient and requires less computer memory storage and maintains high execution speed. Also, the submitted process can be easily programmed and be simply extended to different types of load characteristics. A simulation results applied to the IEEE 34 bus radial distribution feeder are examined by using the MATLAB.

  • PDF

Effect of Diffuser Width on Rotating Stall in Centrifugal with Vaneless Diffuser (원심형 송풍기에서 베인리스 디퓨저의 폭변화가 선회실속에 미치는 영향)

  • Kim, Jin-Hyeong;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1293-1302
    • /
    • 2001
  • It is generally known that radial vane blowers with vaneless diffuser may generate mostly only a rotating stall but backward curved vane blowers may do both an impeller and a diffuser rotating stalls. In this study, it was found from the numerical and experimental results that the diffuser rotating stall does not appear in a radial vane because of the suppression for the diffuser stall appearance by occurring of impeller rotating stall in a large flow rate coefficient. The diffuser rotating stalls occurring when the width of diffuser is broaden fur a backward curved vane blower are classified definitely by the diffuser flow rate coefficient defined by adopting the varying diffuser width.

A Study on the Heat Transfer in Radial Fin of Rectangular Profile (사각형(四角形) 단면(斷面)을 가진 반경(半徑)핀에서의 열전달(熱傳達)에 관(關)한 연구(硏究))

  • Kim, Kwang-Soo;Yim, Jang-Soon;Seoh, Jeong-Il
    • Solar Energy
    • /
    • v.2 no.1
    • /
    • pp.24-32
    • /
    • 1982
  • In this paper, temperature distributions in radial fin of rectangular profile for steady-state with no heat generation are obtained by one-dimensional analytical method, finite difference method and experiment respectively. Heat flow rate and fin efficiency from the fin model are obtained by analytical method. Consequently, temperature distributions in radial fin can certify that are similar to exact solution. From theoretical analysis, the effects according to heat flow rate and fin efficiency are related to variation of parameters which are fin thickness ${\delta}_o$, fin base temperature $T_o$, thermal conductivity K with same basic dimensions and the effects are studied and compared.

  • PDF