• Title/Summary/Keyword: Radial flow

Search Result 778, Processing Time 0.024 seconds

Discharge Flow Characteristics of A Rotating-Cam and Fixed-Cylinder Type Radial Piston Pump (회전 캠 및 고정 실린더식 레이디얼 피스톤 펌프의 송출 유량 특성)

  • Lee, I.Y.;Choi, S.R.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.1
    • /
    • pp.10-18
    • /
    • 2011
  • In the beginning of this study, pressure in a cylinder and flow rate from a cylinder of a rotating-cam and fixed-cylinder type radial piston pump are investigated through numerical simulations, so that the simulation results might be utilized as basements for examining physical phenomena occurring in the pump assembly. Then, for supplying basic knowledge on pump design, pressure, flow and leakage characteristics of the pump assembly under the variations of major design parameters are investigated through numerical simulations. At the end, key design parameters influencing upon volumetric efficiency of the pump are listed.

Concentric Structure and Radial Joint System within Basic Lava Flow at the seashore of Aewol, Jeju Island, South Korea (제주도 애월읍 해안의 염기성 용암류에 발달한 동심원 구조와 방사상 절리)

  • Ahn, Kun Sang
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.185-194
    • /
    • 2021
  • A lava dome and sheet lava flow can be observed at the seashore of Aewol, Jeju island. The cylindrical lobes are characterized by a concentric structure consisting of a massive core and radial joints. Columnar joints with different thickness between the upper and lower parts are developed in the sheet lava flow around the rock salt field in Goeomri. The upper part of the columnar joints is uneven in shape, and has a diameter of 120-150 cm. The lower part of the columnar joints is hexagonal and pentagonal in shape, and has a diameter of about 60 cm. The cylindrical lobes can be divided into two groups based on size and shape. One is a megalobe, with a semicircular outline and a maximum diameter of 30 m. The other is a circular lobe with a diameter of less than 10 m. The columns in the radial joints have hexagonal and pentagonal cross sections and gradually increasing diameter, outward from the core, to a size of 80-120 cm at the rim. The concentric structure observed in the cylindrical lavas is attributable to a combination of four factors. The first is a circular crack caused by the decrease of the temperature and density difference between the inside and outside of the cylindrical lava flow. The second is a concentric chisel mark of the radial joints, which formed at the same time as the radial joints. The third is a flow band, which is a trace left in a round passage when lava flows through. The fourth is a vesicular band formed in a cave by gas bubbles escaping from the lava flow.

Optimal Location of Support Point for Weight Minimization in Radial Gate of Dam Structures (회전식 수문의 중량 최소화에 대한 지지점 위치의 최적설계)

  • Kwon, Young-Doo;Kwon, Soon-Bum;Goo, Nam-Seo;Jin, Seung-Bo
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.492-497
    • /
    • 2000
  • This paper focuses on the weight minimization of radial gate, as an extention of the previous work. Radial gates are commonly used to regulate the flow-rate of general purpose dams, due to its simplicity in manufacture and control. The present study identifies the optimum position of support point for 2 and 3 arm type radial gate, which guarantees the minimum weight satisfying strength constraint condition. These optimum designs are then compared with previously constructed radial gates. The results indicate that the weights of the optimized radial gates reduce by about 20%, compared to those of the conventionally designed radial gates.

  • PDF

Control of Hot Spots in Plug Flow Reactors Using Constant-temperature Coolant (등온 냉각액을 활용한 plug flow reactor 내의 과열점 제어를 위한 제어모델 개발)

  • Rhyu, Jinwook;Kim, Yeonsoo;Lee, Jong Min
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.77-84
    • /
    • 2021
  • To control hot spot in a plug flow reactor (PFR) is important for the yield and purity of products and safety. In this paper, coolant temperature is set as a state variable, and radial distributions of heat and mass are considered to model the PFR more realistic than without considering radial distributions. The model consists of three state variables, reactant concentration, reactant temperature, and the coolant temperature. The flow rate of the isothermal coolant is a manipulated variable. This paper shows that the controller considering the radial distributions of heat and mass is more effective than the controller without them. Assuming that u3,0 is 0.7, the suggested control equation was robust when St is bigger than 1.3, and Ac/A is smaller than 2.0. Under this condition, the hot spot temperature changed within the relative error of one percent when the temperature of input altered within the range of five percent.

LES study of flow field and aerodynamic forces on a circular cylinder at Re=3900 with focus on grid resolution

  • Hongmiao Jing;Jitao Zhang;Qingkuan Liu;Yangxue Wang
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.175-200
    • /
    • 2023
  • The large eddy simulation (LES) of the flow around a circular cylinder is not only affected by the sub-grid scale (SGS) model but also by the grid resolution of the computational domain. To study the influence of different grids on the LES results, the LES simulations of the flow around a circular cylinder with different grids at Reynolds number (Re) = 3900 was performed. A circular computational domain with different radial growth rates and circumferential and spanwise grid numbers was adopted for the simulations. Meanwhile, the aerodynamic forces, wind pressure coefficients, mean and instantaneous flow fields, and the effect of grid resolution on them were comprehensively analyzed. The results indicate that the lift coefficient, wind pressure coefficient, and recirculation length are significantly affected by the radial growth rate of the grid and the circumferential grid number. The spanwise grid number has a significant influence on the three-dimensionality of the flow and plays an important role in velocity fluctuations in the wake region. Nevertheless, the aerodynamic coefficients and recirculation length are not sufficiently sensitive to the grid number in the spanwise direction. By comparing the results, it can be concluded that suitable and reliable LES results can be obtained when the radial growth rate is 1.03 or 1.05, the circumferential grid number is 160, 200, or 240, and the spanwise grid number is 64. A radial growth rate 1.05, circumferential grid number 160, and spanwise grid number 64 are recommended to reduce the grid amount and further improve the efficiency.

Numerical Simulation of Gas Flow within a Radial Fracture Created by Single-Hole Blasting (단일공 발파에서 생성된 균열망에 작용하는 가스압의 수치해석적 산정)

  • Jeng, Yong-Hun;Lee, Chung-In
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.413-421
    • /
    • 2006
  • In order to explain entirely dynamic fracture process induced by blasting in rock mass, it needs to consider detonation pressure and gas pressure acting on blasthole wall simultaneously. In this study, prior to simulating the coupling between gas flow and rock mass, we analyzed effects of gas pressure-time history, length of cracks and equation of state adopted to calculate the gas pressure on the gas flow within a radial fracture created by single-hole blasting. The effects were investigated on two assumptions: (a) the radial fracture was composed of 5 cracks which were 0.01 m in length and 0.001 m in asperity each and (b) the PETN explosive which diameter was 36 mm was charged in a blasthole of 45 mm diameter. It was concluded that the maximum gas pressure and its travel time were dependent on characteristics of charged explosives and geometrical properties of radial fracture.

Separation of Colloidal Particles by Osmotic Sink Field Flow Fractionation Using UF Hollow Fiber Membranes

  • Shin, Se-Jong;Min, Byoung-Ryul;Park, Jin-Won;Ahh, Ik-Sung;Lee, Kang-Taek;Lee, Jae-Hoon
    • Korean Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.59-68
    • /
    • 2001
  • Unlike existent field flow fractionation, new method, osmotic sink field flow fractionation is introduced and used ultrafiltration hollow fiber membranes as separation channel. This hollow fiber osmotic sink field flow fractionation is called HF-OSFFF. A theory that describes the retention, relaxation, resolution, plate number for the system, has been developed and experimentally verified by separation model of po1ystyrene latex beads. At external field, it is measured that radial flow rates change according to various concentrations of PEG solutions. Concentration of PEG solution vs. radial flow rate is a linear relation. For diameter distribution of unknown polymer sample, HF-OSFFF compared with the commercial capillary hydrodynamic flow fractionation (CHDF).

  • PDF

Laboratory investigation of the effects of translation on the near-ground tornado flow field

  • Razavi, Alireza;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.26 no.3
    • /
    • pp.179-190
    • /
    • 2018
  • Translation of tornadoes is an important feature in replicating the near-ground tornado flow field which has been simulated in previous studies based on Ward-type tornado simulators using relative motion of the ground plane. In this laboratory investigation, effects of translation on the near-ground tornado flow field were studied using the ISU Tornado Simulator that can physically translate over a ground plane. Two translation speeds, 0.15 m/s and 0.50 m/s, that scale up to those corresponding to slowly-moving tornadoes in the field were selected for this study. Compared with the flow field of a stationary tornado, the simulated tornado with translation had an influence on the spatial distribution and magnitude of the horizontal velocities, early reversal of the radial inflow, and expansion of the core radius. Maximum horizontal velocities were observed to occur behind the center of the translating tornado and on the right side of its mean path. An increase in translation speed, resulted in reduction of maximum horizontal velocities at all heights. Comparison of the results with previous studies that used relative motion of the ground plane for simulating translating tornadoes, showed that translation has similar effects on the flow field at smaller radial distances (~2 core radius), but different effects at larger radial distances (~4 core radius). Further, it showed that the effect of translation on velocity profiles is noticeable at and above an elevation of ~0.6 core radius, unlike those in studies based on the relative motion of the ground plane.

Experimental Study of the Axial Slit Wall and Radial Temperature Gradient Effect on Taylor-Couette Flow (Taylor-Couette 유동에서 축방향 홈과 반경방향 온도구배의 영향에 대한 실험적 연구)

  • Lee, Sang-Hyuk;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.33-38
    • /
    • 2008
  • The effect of the radial temperature gradient and the presence of slits in the wall of outer of two cylinders involved in creating a Taylor-Couette flow was investigated by measuring the velocity field inside the gap. The slits were azimuthally located along the inner wall of the outer cylinder and the number of slits used in this study was 18. The radius ratio and aspect ratio of the models were 0.825 and 48, respectively. The heating film wrapped around the inner cylinder was used for generating the constant heat flux and we ensured the constant temperature condition at the outer space of the outer cylinder. The velocity fields were measured by using the PIV(particle image velocimetry) method. The refractive index matching method was applied to remove image distortion. The results were compared with plain wall configuration of Taylor-Couette flow. From the results, the presence of slits in the wall of outer cylinder and temperature gradient increased the flow instability.

An Experimental Study on the Rotating Stall in Vaneless Diffuser of Centrifugal Blower with Radial Type Impeller (반경류형 회전차를 가진 원심송풍기의 깃이 없는 디퓨저 내의 선회실속에 관한 실험적 연구)

  • Kim, Jin Hyoung;Cho, Kang Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1247-1254
    • /
    • 1998
  • The vaneless diffusers are widely used in industrial centrifugal compressors which are required to operate within a wide flow range. When very high pressure gases are handled by centrifugal compressor. rotating stall is a serious problem because of the occurance of large aerodynamic exciting forces. Rotating stall mostly often occurs in the impellers but it can occur in vaneless diffusers as well. In this experimental study, the rotating stall in vaneless diffuser with radial type centrifugal impeller was measured by changing the flow rate with I-type, X-type hotwire. As the result, it was cleared which type of rotating stall of the impeller stall would occur and how many stall cells would appear relating with the flow rate. As the flow rate reduced, the propagation speed of rotating stall was reduced. But the stall cell number unchanged with respect to the flow rate.