• Title/Summary/Keyword: Radial flow

Search Result 783, Processing Time 0.028 seconds

Evaluation of Efficiency by Applying Different Optimization Method for Axial Compressor (최적화 방법에 따른 축류압축기의 효율평가)

  • Jang, Choon-Man;Abdus, Samad;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.543-544
    • /
    • 2006
  • Shape optimization of a transonic axial compressor rotor operating at the design flow condition has been performed using three-dimensional Navier-Stokes analysis and three different surrogate models: i.e.., Response Surface Method(RSM), Kriging Method, and Radial Basis Function(RBF). Three design variables of blade sweep, lean and skew are introduced to optimize the three-dimensional stacking line of the rotor blade. The object function of the shape optimization is selected as an adiabatic efficiency. Throughout the shape optimization of the rotor blade, the adiabatic efficiency is increased for the three different surrogate models. Detailed flow characteristics at the optimal blade shape obtained by different optimization method are drawn and discussed.

  • PDF

Flowfield Characteristic of a Flat Flame Burner using One Frame Double Exposure Method (단일 프레임 이중 노출법을 이용한 Flat Flame Burner의 유동장 특성에 관한 연구)

  • Jeong, Y.K.;Jeon, C.H.;Chang, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.692-697
    • /
    • 2000
  • Recently, Flat flame burners are hilighted in high-load burners. Our study contains flow field analysis of a flat flame burner. In this paper, We analyzed the direction and magnitude of the velocity in a round tile type burner with swirl angles, $10^{\circ},\;30^{\circ},\;50^{\circ}$. In the case of swirl angle $10^{\circ}$, because axial momentum is larger than radial momentum, Recirculation region was weakly developed. In the case of swirl angle $50^{\circ}$, Flow in front of the tile is distributed for radial direction. And Recirculation region is large. So, We expect that the radiation can be transmitted from tiles and the recirculation region may cause $NO_x$ reduction.

  • PDF

Experimental Study on the Flow Characteristics of High Pressurized Jets Depending upon Aspect Ratio (노즐 형상비에 따른 고압 분사류의 유동특성에 관한 실험적 연구)

  • Namkung J.H.;Lee S.J.;Kim K.C.;Lee S.G.;Rho B.J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.233-236
    • /
    • 2002
  • The high-pressurized spray nozzle is used f3r special washing and cutting with strong impact force. The performance of this nozzle, which focused on spray penetration and radial dispersion, was mainly investigated to maximize the momentum and minimize the flow loss. Hence, our experimental research was conducted by changing the aspect ratio ranging from 0 to 3 with nozzle outlet of 1.1. The spray trajectory far high-pressurized water was experimentally investigated using PDPA diagnostics, which was available at spray downstream region. As the spray at upstream near the nozzle exit did not show the improved disintegration. The results showed empirical correlation with regard to non-dimensional axial velocity distribution, spray penetration, and radial spreading rate with photographic visualization.

  • PDF

Radial Heat Flow Method for Measuring the Thermal Conductivity of Kaolin (고령토의 열전도계수 측정을 위한 반경방향 열흐름법)

  • Pak, Hi-Yong;Lee, Hung-Joo;Kang, Kun
    • Solar Energy
    • /
    • v.9 no.1
    • /
    • pp.3-13
    • /
    • 1989
  • In this study, the equipment for thermal conductivity measurement by radial heat flow method was constructed in order to measure the powder state materials like kaolin. The Kaya and Hadong kaolins were chosen as the test powders because of their abundent reserves and the thermal conductivity values of those powders were measured at the different temperatures and densities. As the results of this study, it was found that the thermal conductivity of kaolin was constant at rather low temperature range from 10 to $42^{\circ}C$ and greatly affected by the density variation.

  • PDF

A Study on te Dynamic Behavior of a Scroll Compressor Considering Tangential Leakage (접선방향의 누설을 고려한 스크롤 압축기의 동적 거동에 관한 연구)

  • 김태종;한동철
    • Tribology and Lubricants
    • /
    • v.12 no.2
    • /
    • pp.20-31
    • /
    • 1996
  • Pressures in compression pockets consists of two identical spiral scrolls are influenced by gas flow resistance in discharge process and leakages in radial and tangential directions between two scroll wraps. In this paper, considering geometrical characteristics of these members, flow resistance and refrigerant gas leakage losses, pressure variations in compression pockets are calculated. For a scroll compressor model with fixed crank mechanism, acting load on crankshaft is analyzed. And, for a vertical type crankshaft-journal bearing system used in scroll compressor, nonlinear transient response is calculated including nonlinear fluid film reaction forces of journal bearings.

Heat transfer characteristics between a rotating flat plate and an impinging water jet (회전전열평판과 충돌수분류간의 열전달특성에 관한 실험적 연구)

  • 전성택;이종수;최국광
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.509-522
    • /
    • 1998
  • An experimental investigation is reported on the heat transfer coefficient from a rotating flat plate in a round turbulent normally impinging water jet. Tests were conducted over a range of jet flow rates, rotational speeds, jet radial posetions with various combinations of three jet nozzle diameter. Dimensionless correlation of average Nusselt number for laminar and turbulent flow is given in terms of jet and rotational Reynolds numbers, dimensionless jet radial position. We suggested various effective promotion methods according to heat transfer characteristics and aspects. The data presented herein will serve as a first step toward providing the information necessary to optimize in rational manner the cooling requirement of impingement cooled rotating machine components.

  • PDF

Numerical Analysis of Tip Clearance Effects in a Micro Radial Inflow Turbine

  • Watanabe, Naoki;Teramoto, Susumu;Nagashima, Toshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.622-627
    • /
    • 2004
  • There are many difficulties in realizing Ultra-micro gas turbine system. Among them, the effects of tip clearance upon the micro turbine flowfield are discussed in this paper. The flowfield was investigated numerically with the Reynolds-averaged three-dimensional thin-layer Navier-Stokes equations. Calculations were conducted with clearance height from 0% to 10% of the passage height. Leakage mass flow and deterioration of efficiency are proportional to the clearance height for the clearance height larger than 4%. However, in the case of 2% clearance, leakage flow is significantly reduced due to relative motion of the casing and as a result deterioration of efficiency is very small. It is difficult to control tip clearance in micro turbines, but the results of this study indicate that if the clearance height is controlled within a few per-cent of passage height, deterioration of stage performance will be small.

  • PDF

Thin CNTs nanoliquid film development over a rough rotating disk

  • Swatilekha Nag;Susanta Maity;Sanjeev K. Metya
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.91-104
    • /
    • 2023
  • Development of thin carbon nanotubes (CNTs) nanoliquid film over the rough surface of a horizontal rotating disk is investigated by considering symmetric roughness either along the azimuthal or radial directions. The disk surface is either heated or cooled axisymmetrically from below. The effects of single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) are analyzed on the film thinning process with different types of base liquids. Closed form solutions for velocity and temperature field are obtained for small values of Reynolds number whereas the numerical solution is derived for moderate values of Reynolds number. It is found that fluid retention / depletion takes place when the roughness is symmetric along the azimuthal / radial directions. It is also seen that the film thinning rate enhances for MWCNTs compare to SWCNTs. Further it is found that two different heat transfer regions exits within the flow domain depending on the fact that heat is transferred from disk to liquid film and vice-versa.

Relationship between plasma flows and the near-Earth tail dipolarizations

  • Lee, Dae-Young;Kim, H.S.;Ohtani, S.
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.29.1-29.1
    • /
    • 2011
  • The magnetic dipolarizations at the tail are often, if not always, associated with plasma flows of some magnitude. The associated flow direction is known to be earthward most often but not necessarily always. It is the primary goal of this paper to clarify the association between dipolarizations and the associated flow characteristics in general, but with a primary emphasis on tailward flow cases. Based on a number of dipolarizations that we identify at the near-Earth tail using the THEMIS tail observations we first confirm that dipolarizations can in general initiate in association with both earthward and tailward flows. Also, the main direction of the plasma flow, whether being earthward or tailward, is not critical in determining the intensity of the dipolarizations. We actually identify some events of tailward flow-associated dipolarizations that are as much intense as the earthward flow-associated events. The occurrence rate of the tailward flow-associated dipolarizations is mainly concentrated in the radial region of < 10 RE and in the local time region of 22-01 hr. However, its relative occurrence rate is rather low, ~19 % in the radial region and ~15.3 % in the local time region, as compared to that for the events associated with all other types of flows. Furthermore, the flow direction often changes no matter whether it is initially earthward or tailward near the onset time. As a consequence, the net transport of the magnetic flux during the main duration of the dipolarization process is earthward for nearly all of the dipolarizations that initiate with dominantly tailward flows near the onset, as is the case for those that initiate with dominantly earthward flows.

  • PDF

Performance and Flow Characteristics of a Forward Swept Propeller Fan (전향 스윕 프로펠러 홴의 성능 및 유동특성)

  • Kim, Jin-Kwon;Kang, Shin-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.75-84
    • /
    • 2000
  • Performance and flow characteristics of a small forward swept propeller fan for home refrigerators are studied experimentally. An unusual discontinuity is observed in the performance curve of the fan. Mean flow fields measured with as-hole Pitot probe reveal that the flow is axial at the high flow rate and radial at the low flow rate. The flow structure changes abruptly across the discontinuity. Unsteady flow measurements with a set of hot-wire probes indicate that near the discontinuity a single-cell stall rotates at 40% speed of the fan speed, while away from the discontinuity the flow shows periodic variation corresponding to the blade passage frequency. Phase-lock averaged flow fields measured with a triple-sensor hot-wire probe show that there appears radially inward flow over the pressure side of the blade and the outward passage flow over the tip.