• 제목/요약/키워드: Radial Velocity Curve

Search Result 36, Processing Time 0.028 seconds

A Study on the Three Dimensional Statistical Turbulent Flow Characteristics Around a Small-Sized Axial Fan for Refrigerator (냉장고용 소형 축류홴의 통계학적 3차원 난류유동 특성에 관한 연구)

  • Kim, Jang-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.819-828
    • /
    • 2001
  • The operating point of a small-sized axial fan is strongly dependent upon the system resistance. Therefore, the turbulent flow characteristics around a small-sized axial fan may change significantly according to the operating point. This study represents three-dimensional turbulent flow characteristics around a small-sized axial fan measured at the ideal design point $\phi$=0.25, which is equivalent to the maximum total efficiency point, by using three dimensional fiber-optic type LDA system. This LDA system is composed of a 5 W Argon-ion laser, two optics in back-scatter mode, three BSAs, a PC, and a three-dimensional automatic traversing system. A kind of paraffin fluid is used to supply particles by means of fog generator. Mean velocity profiles downstream of a small-sized axial fan along the radial distance show that the streamwise and the tangential components exist in a predominant manner, while the radial component has a small scale distribution and shows the inflection which its flow direction is inward or outward. Moreover, the turbulent intensity profiles show that the radial component exists the most greatly among turbulent energies.

An Investigation on Turbulent Flow Characteristics According to the Operating Loads of Three-Dimensional Small-Size Axial Fan by Large Eddy Simulation (대규모 와 모사에 의한 3차원 소형축류홴의 운전부하에 따른 난류유동 특성치 고찰)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.50-56
    • /
    • 2016
  • This paper handled an investigation on the turbulent flow characteristics of three-dimensional small-size axial fan(SSAF) according to operating loads. Also, it was carried out by unsteady-state, incompressible and three-dimensional large eddy simulation(LES). The downstream flow type of SSAF is changed from axial flow to radial flow around the beginning of stall region at the aerodynamic performance curve. Axial mean velocity component largely grows around blade tip at the operating point of A to D, but transverse and vertical mean velocity components as well as Reynolds shear stresses highly develop around blade tip at the operating point of E to H. On the other hand, the peak value of turbulent kinetic energy developed around blade tip shows the highest at the operating point of E.

Behavior of Rotating Stall Cell in a High Specific-Speed Diagonal Flow Fan

  • Shiomi, Norimasa;Cai, W.X.;Muraoka, A.;Kaneko, K.;Setoguchi, T.
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1860-1868
    • /
    • 2001
  • An experimental investigation was carried out to clarify unsteady flow fields with rotating stall cell, especially behavior of stall cell, in a high specific-speed diagonal flow fan. As its specific-speed is vary high for a diagonal flow fan, its pressure-flow rate curve tends to indicate unstable characteristics caused by rotating stall similar to axial flow fan. Although for an axial flow fan many researchers have investigated such the flow field, for a diagonal flow fan tittle study has been done. In this study, velocity fields at rotor Inlet in a high specific-speed diagonal flow fan were measured by use of a single slant hot-wire probe. These data were processed by using the "Double Phase-Locked Averaging"(DPLA) technique, i. e. phases of both the rotor blade and the stall cell were taken into account. The behaviors of stall cell at rotor inlet were visualized for the meridional, tangential and radial velocity.

  • PDF

Mass transfer with Asymmetric Light Curve of Contact and Near-Contact Binaries

  • Rittipruk, Pakakaew;Kang, Young-Woon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.50.1-50.1
    • /
    • 2010
  • We have analyzed times of minima for of 6 binary systems. Three binary systems show period decrease at rate $3.19{\times}10-5$ yr -1 for SV Cen, $1.35{\times}10-7$ yr -1 for RT Scl and $1.14{\times}10-7$ yr -1 for AD Phe. Two systems show period increase $5.696{\times}10-8$ yr -1 for SX Aur and $6.93{\times}10-8$ yr -1 for GO Cyg. One system shows cyclic period variation. We estimated the mass transfer rate for 5 binary systems. Four systems show asymmetric light curves. Two asymmetric light curves (SV Cen and RT Scl) are due to hot spot caused by mass transfer. And two asymmetric light curves (AD Phe and TY Boo) are due to cool spot caused by magnetic activities on the cooler component. We also obtain absolute dimensions from photometric solution and spectroscopic solution by analyzing their light curves and radial velocity curves, which are collected from literatures, using 2007 version Wilson and Deviney computer code.

  • PDF

LIGHT CURVE ANALYSIS OF CONTACT BINARY SYSTEM V523 CASSIOPEIAE (접촉쌍성 V523 CAS의 광도곡선 분석)

  • 김진희;정장해
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.263-272
    • /
    • 2002
  • A total of 616 observations (308 in B, 308 in V) to. V523 Cas was made on three nights from October 19 to 21 in 1999 using the 1.8m telescope with 2K CCD camera of the Bohyunsan Optical Astronomy Observatory of KAO. With our data we constructed the BV light curves and determined 4 times of minimum light. We also obtained physical parameters of the system by combined analysis of both light and radial velocity curves using the Wilson-Devinney code.

Contact and Near-Contact Binaries with co-relation of Mass transfer and Asymmetric Light Curve

  • Rittipruk, Pakakaew;Kang, Young-Woon
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.32.3-32.3
    • /
    • 2010
  • We have analyzed times of minima for six eclipsing binary systems which show asymmetric light curves. We found that five binary systems show period decrease and one system shows cyclic period variation. Three asymmetric light curves (SV Cen, RT Scl and VW Boo) are due to hot spot caused by mass transfer. Other three asymmetric light curves (AD Phe,, EZ Hya and TY Boo) are due to cool spot on the cooler component caused by magnetic activities. We also obtain absolute dimensions from photometric solution and spectroscopic solution by analyzing their light curves and radial velocity curves, collected from literatures, using 2007 version Wilson and Devinney computer code.

  • PDF

A Study on Flame Extinction and Edge Flame Oscillation in Counterflow Diffusion Flame (대향류확산화염에서 화염소화와 에지화염진동에 관한 연구)

  • Park, Dae-Geun;Yun, Jin-Han;Park, Jeong;Keel, Sang-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.64-76
    • /
    • 2009
  • Experimental and numerical studies are conducted on the characteristics of flame extinction and edge flame oscillation in counterflow diffusion flames. The characteristics of flame extinction and edge flame oscillation are well described varying burner diameter, separation distance between two burners, global strain rate, and velocity ratio. It is verified numerically and experimentally that radial conduction heat loss significantly contributes to flame extinction and edge flame oscillation at low strain rate flames in zero- and micro-gravity. It is also shown that for appropriately small burner diameters flame extinction modes are grouped into four and these are significantly attributed to excessive radial conduction heat loss. The edge flame oscillation can be characterized well by one curve with Strouhal number and Peclet number.

THE CHARACTERISTICS OF HEAT TRANSFER AND CHEMICAL REACTION FOR THERMAL CRACKING OF ETHANE IN TUBULAR REACTOR (에탄 열분해 반응이 동반된 관형 반응기에서의 열전달 및 화학반응 특성 연구)

  • Shin, C.Y.;Ahn, J.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.43-49
    • /
    • 2016
  • Thermal cracking is commonly modeled as plug flow reaction, neglecting the lateral gradients present. In this paper, 2-dimensional computational fluid dynamics including turbulence model and molecular reaction scheme are carried out. This simulation is solved by means of coupled implicit scheme for stable convergence of solution. The reactor is modeled as an isothermal tube, whose length is 1.2 m and radius is 0.01 m, respectively. At first, The radial profile of velocity and temperature at each point are predicted in its condition. Then the bulk temperature and conversion curve along the axial direction are compared with other published data to identify the reason why discussed variations of properties are important to product yield. Finally, defining a new non-dimensional number, Effect of interaction with turbulence, heat transfer and chemical reaction are discussed for design of thermal cracking furnace.

Experimental study on nucleate boiling heat transfer enhancement using an electric field (전기장을 이용한 핵비등 열전달 촉진에 관한 실험적 연구)

  • Gwon, Yeong-Cheol;Kim, Mu-Hwan;Gang, In-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1563-1575
    • /
    • 1997
  • To understand EHD nucleate boiling heat transfer enhancement, EHD effects on R-113 nucleate boiling heat transfer in a non-uniform electric field were investigated. The pool boiling heat transfer and the dynamic behavior of bubbles in d.c./a.c. electric fields under a saturated or subcooled boiling were studied by using a plate-wire electrode and a high speed camera. From the pool boiling heat transfer study, the shift of the pool boiling curve, the increase of the heat transfer and the delay of ONB and CHF points to higher heat fluxes were observed. From the dynamic behavior of bubbles, it was observed that bubbles departed away from the whole surface of the heated wire in radial direction due to EHD effects by a nonuniform electric field. With increasing applied voltages, the bubble size decreased and the active nucleation site and the departure number of bubbles showed the different trend. The present study indicates that the EHD nucleate boiling heat transfer is closely connection with the dynamic behavior of bubbles and the secondary flow induced near the heated surface. Therefore, the basic studies on the bubble behavior such as bubble frequency, bubble diameter, bubble velocity and flow characteristics are necessary for complete understanding of the enhancement mechanism of the boiling heat transfer using an electric field.

PHOTOMETRIC STUDY OF THE NEAR-CONTACT BINARY CN ANDROMEDAE

  • Lee Chung-Uk;Lee Jae-Woo
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.25-30
    • /
    • 2006
  • We completed four color light curves of the near-contact binary CN And during three nights from September to December 2004 using the 61-cm reflector and BV RI filters at Sobaeksan Observatory. We determined four new times of minimum light (two timings for primary eclipse, two for secondary). Newly obtained BV RI light curves and the radial velocity curves from Rucinski et a1. (2000) were simultaneously analyzed to derive the system parameters of CN And. We used the semi-detached mode 4 of the 2003-version of the Wilson-Devinney binary model, and interpreted the asymmetry of the light curve by introducing two spots; a cool spot on the primary component and a hot spot on the secondary component. New photometric parameters are not much different from those of Cicek et a1. (2005), and it is considered that the system is in the era of broken contact. From the orbital period study with all available timings including our data, we found a continous period decrease with a rate of $P_{obs}=--1.82{\times}10^{-7}\;d\;yr^{-1}$ that can be explained with two possible mechanisms. We think the most likely cause of the period decrease is a thermal mass transfer from the primary to the secondary component, rather than angular momentum loss due to a magnetic stellar wind.