• Title/Summary/Keyword: Radial Displacement

Search Result 247, Processing Time 0.023 seconds

Prediction of nominal wake of a semi-displacement high-speed vessel at full scale

  • Can, Ugur;Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.143-157
    • /
    • 2022
  • In this study, the nominal wake field of a semi-displacement type high-speed vessel was computed at full scale by using CFD (Computational Fluid Dynamics) and GEOSIM-based approaches. A scale effect investigation on nominal wake field of benchmark Athena vessel was performed with two models which have different model lengths. The members of the model family have the same Fr number but different Re numbers. The spatial components of nominal wake field have been analyzed by considering the axial, radial and tangential velocities for models at different scales. A linear feature has been found for radial and tangential components while a nonlinear change has been obtained for axial velocity. Taylor wake fraction formulation was also computed by using the axial wake velocities and an extrapolation technique was carried out to get the nonlinear fit of nominal wake fraction. This provides not only to observe the change of nominal wake fraction versus scale ratios but also to estimate accurately the wake fraction at full-scale. Extrapolated full-scale nominal wake fractions by GEOSIM-based approach were compared with the full-scale CFD result, and a very good agreement was achieved. It can be noted that the GEOSIM-based extrapolation method can be applied for estimation of the nominal wake fraction of semi-displacement type high-speed vessels.

Development of camera modeling and calibration technique with geometric distortion (기하학적 왜곡을 고려한 카메라 모델링 및 보정기법 개발)

  • 한성현;이만형;장영희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1836-1839
    • /
    • 1997
  • This paper presents machine vision technique with a camera modeling that accounts for major sources of camera distortion, namely, radial, decentering, and thin prism distortion. Radial distortion causes an inward or outward displacement of a given image point from its ideal location. Actual optical systems are subject to various degrees of decentering, that is, the optical centers of lens elements are not strictly collinear. It is our purpose to develop the vision system for the pattern recognition and the automatic test of parts and to apply the line of manufacturing.

  • PDF

A Study on Machine Vision System and Camera Modeling with Geometric Distortion

  • 왕한흥;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.179-185
    • /
    • 1997
  • This paper presents machine vision technique with a camera modeling that accounts for major sources of camera distortion, namely,radial, decentering, and thin prism distortion. Radial distortion causes an inward or outward displacement of a given image point from its ideal location. Actual optical systems are subject to varios degrees of decentering,that is,the optical centers of lens elements are not strictly collinear. Thin prism distortion arises form imperfection in lens design and manufacturing as well as camera assembly. It is our purpose to develop the vision system for the pattern recognition and the automatic test of and to apply the line of part manufacturing.

Studies on the Elasticity, Young Modulus, and Breaking Tension of the Tympanic Membrane in Dog (고막(鼓膜)의 탄성도(彈性度)와 파열장력(破裂張力)에 관(關)한 연구(硏究))

  • Lee, Young-Shik
    • The Korean Journal of Physiology
    • /
    • v.2 no.1
    • /
    • pp.39-45
    • /
    • 1968
  • Recently, in this department, pressure-displacement curve and breaking tension of dog and human tympanic membrane were studied using intact, fresh or dried tympanic membrane attached to external auditory meatus. However, physical property, proper elasticity-Young Modulus, of the tympanic membrane has not been clarified yet. Present study is attempted to further clarify proper Young Modulus of tympanic membrane, and to distinguish possible difference between layer of stratum radiatum and layer of stratum circulare of tympanic membrane in breaking tension and in Young Modulus. Tympanic membrane was excised from sacrificed dog, and preparation was made into the size of approximately 1 mm in width and 3 mm in length. In fresh or dried tympanic membrane, which was dried at $80^{\circ}C$ for 24 hrs., some preparations were made along the long axis parallel to the fibers of radial direction, and others were made along the long axis perpendicular to the radial fibers-circular direction. Breaking tension and displacement according to loading, were measured and Young Modulus was calculated in tympanic membrane preparations under the different experimental conditions. Results obtained are summarized as follows : 1. Young Modulus of fresh tympanic membrane in radial direction was $6.57{\times}10^8\;dyne/cm^2$, and that of fresh preparation in circular direction was $1.68{\times}10^8\;dyne/cm^2$. The Young Modulus of fresh tympanic membrane in radial direction resembles to that of silk and whale moustache. In dried tympanic membrane, Young Modulus of preparation of radial direction was $30.2{\times}10^8\;dyne/cm^2$ and that of preparation in circular direction was $25.0{\times}10^8\;dyne/cm^2$. 2. Breaking tension of fresh tympanic membrane was 44.9 gm/mm in radial preparation, and 7.9 gm/mm in circular preparation. In dried tympanic membrane, breaking tension was 46.7 gm/mm in preparation of radial direction, and 17.2 gm/mm in preparation of circular direction. 3. Much smaller breaking tension of the circular preparation-one fifth to the radial preparation-seemed to be responsible for the higher incidence of circular fiber breaking in tympanic membrane performation caused by trauma or sudden change in atmospheric pressure. 4. The correlation seemed to be very close between breaking tension and Young Modulus in tympanic membrane.

  • PDF

The Measurement of Detachment of Vane Tip in a Positive Displacement Small Vane Pump (압력 평형형 소형 베인펌프에서의 베인 이간 현상 측정)

  • 안형준;양광식;한동철;박민호
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.365-370
    • /
    • 1998
  • This paper reports on the measurement of the vane motion in a positive displacement small vane pump. The capacitive method using ceramic vane is proposed to measure the vane motion. This method enables us to measure only radial motion of the vane regardless of the motions of other directions. With simple experiments and solutions of simultaneous equations, the indirect compensation of measured signal was performed.

  • PDF

Comminuted Radial Head Fracture in All-arthroscopic Repair of Elbow Fracture-dislocation: Is Partial Excision of the Radial Head an Acceptable Treatment Option?

  • Yang, Hee Seok;Kim, Jeong Woo;Lee, Sung Hyun;Yoo, Byung Min
    • Clinics in Shoulder and Elbow
    • /
    • v.21 no.4
    • /
    • pp.234-239
    • /
    • 2018
  • Background: In elbow fracture-dislocation, partial excision of the comminuted radial head fracture that is not amenable to fixation remains controversial considering the accompanying symptoms. This study was undertaken to evaluate the results of radial head partial excision when the comminuted radial head fracture involved <50% of the articular surface in all-arthroscopic repair of elbow fracture-dislocation. Methods: Patients were divided into two groups based on the condition of the radial head fracture. In Group A, the patients had a radial head comminuted fracture involving <50% of the articular surface, and underwent arthroscopic partial excision. Group B was the non-excision group comprising patients with stable and non-displacement fractures. Follow-up consultations were conducted at 6 weeks and at 3, 6, 12, and 24 months after surgery. Results: In all, 19 patients (Group A: 11; Group B: 8) met the inclusion criteria and were enrolled in the study. At the final follow-up, all 19 patients showed complete resolution of elbow instability. No significant differences were observed in the range of motion, visual analogue scale score, and Mayo elbow performance score between groups. Radiological findings did not show any complications of the radiocapitellar joint. However, nonunion of the coracoid fracture was observed in 3 patients (Group A: 1; Group B: 2), without any accompanying instability and clinical symptoms. Conclusions: Considering that the final outcome is coronoid fracture fixation and lateral collateral ligament complex repair for restoring elbow stability, arthroscopic partial excision for radial head comminuted fractures involving <50% of articular surface is an effective and acceptable treatment for elbow fracture-dislocation.

A Study on Cutting Force Measurement Using Cylindrical Capacitance-Type Spindle Displacement Sensor (주축 변위 센서를 이용한 절삭력 측정에 관한 연구)

  • 김일해;박만진;장동영;한동철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.89-94
    • /
    • 2001
  • A cylindrical capacitance-type spindle displacement sensor was designed and tested in the hard turning as a way to develop a sensor that can estimate cutting forces without using a tool dynamometer. The displacement sensor was installed between the face of spindle cover and the chucking element, and measured pure radial motion of the spindle. Ceramic inserts and tool steel workpieceof 65 Rc were used during the hard turning tests. The signals from the sensor showed the same pattern of cutting force variations as those from the tool dynamometer. The research results showed that the developed sensor could be utilized as an effective and cheap on-line sensing device to estimate cutting forces.

  • PDF

Double displacement coupled forced response for electromechanical integrated electrostatic harmonic drive

  • Xu, Lizhong;Zhu, Cuirong;Qin, Lei
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.581-597
    • /
    • 2008
  • In this paper, the double displacement coupled statics and dynamics of the electromechanical integrated electrostatic harmonic drive are developed. The linearization of the nonlinear dynamic equations is completed. Based on natural frequency and mode function, the double displacement coupled forced response of the drive system to voltage excitation are obtained. Changes of the forced response along with the system parameters are investigated. The voltage excitation can cause the radial and tangent coupled forced responses of the flexible ring. The flexible ring radius, ring thickness and clearance between the ring and stator have obvious influences on the double displacement coupled forced responses.

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -Effect of Steel on the Dynamic Response- (탄성지반상에 놓인 철근 콘크리트 축대칭 쉘의 정적 및 동적 해석(IV) -축대칭 쉘의 동적 응답에 대한 철근의 영향을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.106-113
    • /
    • 1997
  • Dynamic loading of structures often causes excursions of stresses well into the inelastic range, and the influence of the geometric changes on the dynamic response is also significant in many cases. Therefore, both material and geometric nonlinearity effects should be considered in case that a dynamic load acts on the structure. A structure in a nuclear power plant is a structure of importance which puts emphasis on safety. A nuclear container is a pressure vessel subject to internal pressure and this structure is constructed by a reinforced concrete or a pre-stressed concrete. In this study, the material nonlinearity effect on the dynamic response is formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a total Lagrangian coordinate system, and the equilibrium equation of motion is numerically solved by a central difference scheme. The constitutive relation of concrete is modeled according to a Drucker-Prager yield criterion in compression. The reinforcing bars are modeled by a smeared layer at the location of reinforcements, and the steel layer model under Von Mises yield criteria is adopted to represent an elastic-plastic behavior. To investigate the dynamic response of a nuclear reinforced concrete containment structure, the steel-ratios of 0, 3, 5 and 10 percent, are considered. The results obtained from the analysis of an example were summarized as follows 1. As the steel-ratio increases, the amplitude and the period of the vertical displacements in apex of dome decreased. The Dynamic Magnification Factor(DMF) was some larger than that of the structure without steel. However, the regular trend was not found in the values of DMF. 2. The dynamic response of the vertical displacement and the radial displacement in the dome-wall junction were shown that the period of displacement in initial step decreased with the steel-ratio increases. Especially, the effect of the steel on the dynamic response of radial displacement disapeared almost. The values of DMF were 1.94, 2.5, 2.62 and 2.66, and the values increased with the steel-ratio. 3. The characteristics of the dynamic response of radial displacement in the mid-wall were similar to that of dome-wall junction. The values of DMF were 1.91, 2.11, 2.13 and 2.18, and the values increased with the steel-ratio. 4. The amplitude and the period of the hoop-stresses in the dome, the dome-wall junction, and the mid-wall were shown the decreased trend with the steel-ratio. The values of DMF were some larger than those of the structure without steel. However, the regular trend was not found in the values of DMF.

  • PDF

Analysis of Strength and Displacement of Jig Body in Index Machine (Index Machine의 Jig Body 강도 및 변위해석)

  • 한근조;오세욱;김광영;안성찬;전형용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.24-30
    • /
    • 1998
  • Strength and displacement of jig body in index machine utilized for multiprocess machining such as drilling, boring and tapping, etc, at the same time were analyzed by the use of finite element analysis soft ware ANSYS 5.2A. The whole geometry was constructed by 4048 elements and 7016 nodes employing 8 node brick element. The analyses were carried out on five loading cases combining vertical and horizontal machining to simulate the case occurring large displacement and the one occurring small displacement one and provided following conclusions. (1) Jig body had sufficient strength because its safety factor was 6.95 even in the most severe loading case. (2) The largest displacement in Z direction was 549 m and that in radial direction was 43.7 m. (3) In order to reduce the displacement, vertical machining rather than horizontal or two or three processes should be adopted in the same station. (4) Alternate change of horizontal machining direction at consecutive stations can reduce the displace ment. (5) The dimension of the slider should be increased to reduce the displacement by the tolerance in the sliding part. (6) A bypass idle piston head needs to be installed to give a counterpart supporting load from opposite direction for a single horizontal machining case.

  • PDF