• Title/Summary/Keyword: Radial Deviation

Search Result 77, Processing Time 0.022 seconds

Modeling of Process Plasma Using a Radial Basis Function Network: A Cases Study

  • Kim, Byungwhan;Sungjin Rark
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.268-273
    • /
    • 2000
  • Plasma models are crucial to equipment design and process optimization. A radial basis function network(RBFN) in con-junction with statistical experimental design has been used to model a process plasma. A 2$^4$ full factorial experiment was employed to characterized a hemispherical inductively coupled plasma(HICP) in characterizing HICP, the factors that were varied in the design include source power, pressure, position of shuck holder, and Cl$_2$ flow rate. Using a Langmuir probe, plasma attributes were collected, which include typical electron density, electron temperature. and plasma potential as well as their spatial uniformity. Root mean-squared prediction errors of RBEN are 0.409(10(sup)12/㎤), 0.277(eV), and 0.699(V), for electron density, electron temperature, and Plasma potential, respectively. For spatial uniformity data, they are 2.623(10(sup)12/㎤), 5.704(eV) and 3.481(V), for electron density, electron temperature, and plasma potential, respectively. Comparisons with generalized regression neural network(GRNN) revealed an improved prediction accuracy of RBFN as well as a comparable performance between GRNN and statistical response surface model. Both RBEN and GRNN, however, experienced difficulties in generalizing training data with smaller standard deviation.

  • PDF

The effect of position of propeller fan relative to duct inlet on flow characteristics (프로펠러 팬과 덕트와의 상대위치가 유동특성에 미치는 영향)

  • Sim, W.C.;Cho, K.R.;Joo, W.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.14-22
    • /
    • 1997
  • The position of propeller fan from duct inlet is one of basic parameters for the design of propeller fan. To investigate the effect of its position on fan characteristics, the inlet flow fields and relative flow angles were measured by a 5-hole pitot tube. The experimental results indicate that the ratio of radial flow introduced from propeller circumference to total inlet flow increases with the increase of propeller distance from duct inlet. When fan operates without duct, the total flow rate and the radial flow ratio are higher than those of any other positions of propeller relative to duct inlet. The radial flow ratio decreases as a flow coefficient and the propeller distance decrease. Therefore the front flow fields can be adjusted in some extent by varying the propeller distance according to a fan loading. The inlet flow angles are decreasing a little as a rotational speed and the propeller distance decrease. In the present case it was judged that the deviation angle of outlet flow became negative owing to a flow separation near a trailing edge.

  • PDF

Speckle Reduction in Near-field Image of Multimode Fiber with a Piezoelectric Transducer

  • Ha, Woo-Sung;Lee, Se-Jin;Oh, Kyung-Hwan;Jung, Yong-Min;Kim, Jun-Ki
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.126-130
    • /
    • 2008
  • We propose and experimentally demonstrate an effective method to reduce near-field speckle noise at the output of a 50 ${\mu}m$ graded index multimode fiber using a short cylindrical piezoelectric transducer(PZT) vibrating in the radial direction. The fiber was coiled as tightly as possible around the mandrel of the PZT and a periodic stretching effect was caused by the radial oscillations of the actuator. The output of the optical fiber using the He-Ne laser source was intensively observed by a CCD camera. By counting all the pixels corresponding to relative intensity graded into 256 levels in the selected area and by calculating standard deviation and mean value of the intensity, we could measure the speckle contrast and vibration effect quantitatively with reduction ratio of pixels and line profile of the illuminated region. It was clearly observed that the characteristics of the speckle pattern in the vibration-on state were significantly improved over that of the vibration-off state due to time-averaged smoothing.

Artificial Intelligence Application using Nutcracker Optimization Algorithm to Enhance Efficiency & Reliability of Power Systems via Optimal Setting and Sizing of Renewable Energy Sources as Distributed Generations in Radial Distribution Systems

  • Nawaf A. AlZahrani;Mohammad Hamza Awedh;Ali M. Rushdi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.31-44
    • /
    • 2024
  • People have been using more energy in the last years. Several research studies were conducted to develop sustainable energy sources that can produce clean energy to fulfill our energy requirements. Using renewable energy sources helps to decrease the harm to the environment caused by conventional power plants. Choosing the right location and capacity for DG-RESs can greatly impact the performance of Radial Distribution Systems. It is beneficial to have a good and stable electrical power supply with low energy waste and high effectiveness because it improves the performance and reliability of the system. This research investigates the ideal location and size for solar and wind power systems, which are popular methods for producing clean electricity. A new artificial intelligent algorithm called Nutcracker Optimization Algorithm (NOA) is used to find the best solution in two common electrical systems named IEEE 33 and 69 bus systems to examine the improvement in the efficiency & reliability of power system network by reducing power losses, making voltage deviation smaller, and improving voltage stability. Finally, the NOA method is compared with another method called PSO and developed Hybrid Algorithm (NOA+PSO) to validate the proposed algorithm effectiveness and enhancement of both efficiency and reliability aspects.

Study on the Coefficient of Consolidation of Marine Clay by Rowecell Consolidation Test (ROWECELL시험에 의한 해성점토의 압밀계수에 대한 연구)

  • 김종국;차영일;김혁기;김영웅
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.725-732
    • /
    • 2003
  • It was achieved that Rowecell test for this undisturbed sample was picked by Block sampler($\phi$:250mm, L:500mm) and hydraulic piston sampler($\phi$:76mm, L:850mm) in the marine clay of YONGYUDO and YEONGJONGDO in this research. Ratio of coefficient of consolidation was analyzed through comparison with C$\_$h/ by CPTu and C$\_$v/ and C$\_$h/ by existent consolidation test. According to analysis, coefficient of consolidation of block sample is fairly greater than coefficient of consolidation of piston sample. And the bigger diameter of undisturbed sample, sample disturbance could know decreasing. Coefficient of consolidation by Rowecell test measured more greatly than coefficient of consolidation by existent consolidation test. Rowecell test could know decreasing consolidation rate because of smear effect by Mandrel injection. Also, C$\_$h/ by CPTu shows deviation by each analysis method, selection of suitable analysis method judged by important leading in the coefficient of consolidation.

  • PDF

A Numerical Study on Slip Factor Variations in Centrifugal Compressor Impellers (원심압축기 임펠러의 미끄럼계수 변화에 관한 수치연구)

  • Oh, Jongsik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.17-23
    • /
    • 1999
  • In the present numerical analysis, investigation of the effect of blade loadings from design shape on the slip factor variation was studied. Both the Eckardt radial bladed impeller and the backswept impeller were analyzed. In addition, a new design of the blade profile was arbitrarily attempted to generate a center-loading pattern in the original backswept impeller. Three dimensional compressible Navier-Stokes flow analysis with the Baldwin-Lomax turbulence model was applied to get the numerical slip factor at each impeller exit plane using the mass-averaging technique. The numerical slip (actors are in good agreement with the experimental ones and the Wiesner's slip factors deviate further from the numerical and experimental ones in both backswept impellers. Deviation angles and meridional channel loadings are found in no relation with the trend of change of the slip factor. Blade-to-blade loadings in midspan location are, however, found to have a direct relationship, especially at the sections where maximum loadings we to be expected. That information can be utilized in establishing an improved expression for slip factors in the future.

  • PDF

Skin Effect of Rotating Magnetic Fields in Liquid Bridge

  • Zhang, Yi;Zeng, Zhong;Yao, Liping;Yokota, Yuui;Kawazoe, Yoshi;Yoshikawa, Akira
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.333-343
    • /
    • 2017
  • A rotating magnetic field (RMF) ${\Phi}_1-{\Phi}_2$ model was developed in consideration of the skin effect. The rotating magnetic field's induced three-dimensional flow was simulated numerically, and the influence of the skin effect was investigated. The rotating magnetic field drives the rotating convection in the azimuthal direction, and a secondary convection appears in the radial-meridional direction. The results indicate that ignoring the skin effect results in a smaller azimuthal velocity component and larger radial and axial velocity components, and that the deviation becomes more obvious with the larger dimensionless shielding parameter K.

Analysis of Water Flux Uniformity for Various Fire Sprinkler Head Type (화재 진압용 스프링클러 헤드 유형에 따른 살수 균일도 분석)

  • Saemi Bang;Chanseob Ahn;Taehoon Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.2
    • /
    • pp.97-104
    • /
    • 2023
  • A sprinkler is a fire suppression system that extinguishes combustible materials in the early stages of a fire, creating a spray. However, spray formation method of the sprinkler can result in an uneven distribution of water spray on the surface of combustible materials. It is necessary to ensure a consistent water flux density regardless of the spray direction and angle. In this study, the water flux distribution was analyzed for the various types of sprinkler head: circular, flush, pendent, and upright types. All sprinkler heads have a K-factor of 80 LPM/(0.1MPa)0.5. In this study, water collection cubes were used to examine the water flux distribution. The upright type sprinkler head showed a low standard deviation in total sprayed area, indicating a high level of uniformity. The upright type head showed the lowest standard deviation in the radial direction, and also showed the lowest standard deviation in the azimuthal direction. Upright sprinkler head has no obstructing structure along the path of droplets after they are generated. For this reason, upright sprinkler head showed the most uniform water flux distribution on the floor.

Accuracy of HF radar-derived surface current data in the coastal waters off the Keum River estuary (금강하구 연안역에서 HF radar로 측정한 유속의 정확도)

  • Lee, S.H.;Moon, H.B.;Baek, H.Y.;Kim, C.S.;Son, Y.T.;Kwon, H.K.;Choi, B.J.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.42-55
    • /
    • 2008
  • To evaluate the accuracy of currents measured by HF radar in the coastal sea off Keum River estuary, we compared the facing radial vectors of two HF radars, and HF radar-derived currents with in-situ measurement currents. Principal component analysis was used to extract regression line and RMS deviation in the comparison. When two facing radar's radial vectors at the mid-point of baseline are compared, RMS deviation is 4.4 cm/s in winter and 5.4 cm/s in summer. When GDOP(Geometric Dilution of Precision) effect is corrected from the RMS deviations that is analyzed from the comparison between HF radar-derived and current-metermeasured currents, the error of velocity combined by HF radar-derived current is less than 5.1 cm/s in the stations having moderate GDOP values. These two results obtained from different method suggest that the lower limit of HF radar-derived current's accuracy is 5.4 cm/s in our study area. As mentioned in previous researches, RMS deviations become large in the stations located near the islands and increase as a function of mean distance from the radar site due to decrease of signal-to-noise level and the intersect angle of radial vectors. We found that an uncertain error bound of HF radar-derived current can be produced from the separation process of RMS deviations using GDOP value if GDOP value for each component is very close and RMS deviations obtained from current component comparison are also close. When the current measured in the stations having moderate GDOP values is separated into tidal and subtidal current, characteristics of tidal current ellipses analyzed from HF radar-derived current show a good agreement with those from current-meter-measured current, and time variation of subtidal current showed a response reflecting physical process driven by wind and density field.

An Isolated Complete Rupture of Radial Collateral Ligament of the Fifth Metacarpophalangeal Joint: A Case Report (제 5중수 수지관절에 단독으로 발생한 요측 측부 인대 완전 파열의 치험례)

  • Kim, Cheol Hann;Tark, Min Sung
    • Archives of Plastic Surgery
    • /
    • v.33 no.6
    • /
    • pp.780-783
    • /
    • 2006
  • Purpose: Rupture of a collateral ligament of the metacarpophalangeal joint is rare except in the thumb. The injured digit became flexed and deviated toward ulna side by the hypothenar intrinsic musculature. Incomplete rupture of a collateral ligament of the metacarpophalangeal joint can be often managed by splinting the affected digit in flexion position, however, in the case of complete tears that distraction of the ends of the ruptured collateral ligament is too great to allow repositioning by splinting. Primary repair of the ruptured collateral ligament or reattachment to bone by a pull-out wire, or tendon graft technique appears to be adequate. Methods: We report a case of instability of fifth metacarpophalangeal joint due to complete rupture of radial collateral ligament. This 18-year-old male presented pain in his right outstretched hand after trauma. The diagnosis was obtained by physical examination and simple radiography. Because of persistent instability after the initial conservative treatment, open reduction and repair surgical treatment was required. Results: The fifth metacarpophalangeal joint became free of pain and stable under forced lateral deviation. Postoperative results showed good metacarpophalangeal joint function and stability during 8 months follow-up period. Conclusion: Because of the interposition of the sagittal band between the ruptured ends of radial collateral ligament such as Stener-like lesion of the thumb, surgical repair of metacarpophalangeal joint collateral ligament of the finger was justified in case of complete laxity in full flexion.