• Title/Summary/Keyword: Radial Basis Function (RBF)

Search Result 244, Processing Time 0.037 seconds

Development of the Power System Fault Diagnostic Algorithm for the Proton Accelerator Research Center of PEFP (양성자가속기 연구센터 전력계통 고장진단 알고리즘 개발)

  • Mun, Kyeong-Jun;Jeon, Gye-Po;Lee, Seok-Ki;Kim, Jun-Yeon;Jung, W.;Yoo, Suk-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.685-686
    • /
    • 2007
  • This paper presents an application of power system fault diagnostic algorithm for the PEFP Proton Accelerator Research Center using neural network. Proposed fault diagnostic system is constructed by the radial basis function (RBF) neural network because it has the capabilities of the pattern classification and function approximation of any nonlinear function. Proposed system identifies faulted section in the power system based on information about the operation of protection devices such as relays and circuit breakers. In this paper, parameters of the RBF neural networks are tuned by the GA-TS algorithm, which has the global optimal solution searching capabilities. To show the validity of the proposed method, proposed algorithm has been tested with a practical power system in Proton Accelerator Research Center of PEFP.

  • PDF

River stage forecasting models using support vector regression and optimization algorithms (Support vector regression과 최적화 알고리즘을 이용한 하천수위 예측모델)

  • Seo, Youngmin;Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.606-609
    • /
    • 2015
  • 본 연구에서는 support vector regression (SVR) 및 매개변수 최적화 알고리즘을 이용한 하천수위 예측모델을 구축하고 이를 실제 유역에 적용하여 모델 효율성을 평가하였다. 여기서, SVR은 하천수위를 예측하기 위한 예측모델로서 채택되었으며, 커널함수 (Kernel function)로서는 radial basis function (RBF)을 선택하였다. 최적화 알고리즘은 SVR의 최적 매개변수 (C?, cost parameter or regularization parameter; ${\gamma}$, RBF parameter; ${\epsilon}$, insensitive loss function parameter)를 탐색하기 위하여 적용되었다. 매개변수 최적화 알고리즘으로는 grid search (GS), genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC) 알고리즘을 채택하였으며, 비교분석을 통해 최적화 알고리즘의 적용성을 평가하였다. 또한 SVR과 최적화 알고리즘을 결합한 모델 (SVR-GS, SVR-GA, SVR-PSO, SVR-ABC)은 기존에 수자원 분야에서 널리 적용되어온 신경망(Artificial neural network, ANN) 및 뉴로퍼지 (Adaptive neuro-fuzzy inference system, ANFIS) 모델과 비교하였다. 그 결과, 모델 효율성 측면에서 SVR-GS, SVR-GA, SVR-PSO 및 SVR-ABC는 ANN보다 우수한 결과를 나타내었으며, ANFIS와는 비슷한 결과를 나타내었다. 또한 SVR-GA, SVR-PSO 및 SVR-ABC는 SVR-GS보다 상대적으로 우수한 결과를 나타내었으며, 모델 효율성 측면에서 SVR-PSO 및 SVR-ABC는 가장 우수한 모델 성능을 나타내었다. 따라서 본 연구에서 적용한 매개변수 최적화 알고리즘은 SVR의 매개변수를 최적화하는데 효과적임을 확인할 수 있었다. SVR과 최적화 알고리즘을 이용한 하천수위 예측모델은 기존의 ANN 및 ANFIS 모델과 더불어 하천수위 예측을 위한 효과적인 도구로 사용될 수 있을 것으로 판단된다.

  • PDF

Modeling of Plasma Process Using Support Vector Machine (Support Vector Machine을 이용한 플라즈마 공정 모델링)

  • Kim, Min-Jae;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.211-213
    • /
    • 2006
  • In this study, plasma etching process was modeled by using support vector machine (SVM). The data used in modeling were collected from the etching of silica thin films in inductively coupled plasma. For training and testing neural network, 9 and 6 experiments were used respectively. The performance of SVM was evaluated as a function of kernel type and function type. For the kernel type, Epsilon-SVR and Nu-SVR were included. For the function type, linear, polynomial, and radial basis function (RBF) were included. The performance of SVM was optimized first in terms of kernel type, then as a function of function type. Five film characteristics were modeled by using SVM and the optimized models were compared to statistical regression models. The comparison revealed that statistical regression models yielded better predictions than SVM.

  • PDF

Load Modeling Method Based on Radial Basis Function Networks Considering of Hormonic components (고조파를 고려한 방사기저함수 네트워크 기반의 부하모델링 기법)

  • Ji, Pyeong-Shik;Lee, Dae-Jong;Lee, Jong-Pil;Lim, Jae-Yoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.46-53
    • /
    • 2008
  • In this study, we developed RBFN(Radial Basis Function Networks) based load modeling method with harmonic components. The developed method considers harmonic information as well as fundamental frequency and voltage considered as essential factors in conventional method. Thus, the reposed method makes it possible to effectively estimate load characteristics in power lines with harmonics. RBFN has some advantage such as simple structure and rapid computation ability compared with multi-layer perceptorn which is extensively applied for load modeling. To verify the effectiveness, the proposed method has been intensively tested with various dataset acquired under the different frequency and voltage and compared it with conventional methods such as polynomial method, MLPN and RBFN with no harmonic components.

On the mitigation of surf-riding by adjusting center of buoyancy in design stage

  • Yu, Liwei;Ma, Ning;Gu, Xiechong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.292-304
    • /
    • 2017
  • High-speed vessels are prone to the surf-riding in adverse quartering seas. The possibility of mitigating the surf-riding of the ITTC A2 fishing vessel in the design stage is investigated using the 6-DOF weakly non-linear model developed for surf-riding simulations in quartering seas. The longitudinal position of the ship's center of buoyancy (LCB) is chosen as the design parameter. The adjusting of LCB is achieved by changing frame area curves, and hull surfaces are reconstructed accordingly using the Radial Basis Function (RBF). Surf-riding motions in regular following seas for cases with different LCBs and Froude numbers are simulated using the numerical model. Results show that the surf-riding cannot be prevented by the adjusting of LCB. However, it occurs with a higher threshold speed when ship's center of buoyancy (COB) is moved towards stem compared to moving towards stern, which is mainly due to the differences on wave resistance caused by the adjusting of LCB.

A Neuro-Fuzzy Model Optimization Using Rough Set Theory (러프 집합이론을 이용한 뉴로-퍼지 모델의 최적화)

  • 연정흠;서재용;김용택;조현찬;전홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.188-193
    • /
    • 2000
  • This paper presents an approach to obtain a reduced neuro-fuzzy model for a plant. The Neuro-Fuzzy Network are compose of the Radial Basis Function Networks with Gausis membership and learned by using temporal back propagation. The dependency in rough set theory is used to eliminate rules. Dependency between the condition membership value of each rule in a model and the output of the plant can allow us to see how much contribution the rule is to identify the plant. While the reduced model maintains the same performance as the original one, the selection algorithm can minimize its complexity and redundancy of the structure.

  • PDF

A Gate Delay Model Considering Temporal Proximity of Multiple Input Switching (다중 입력 변화의 시간적 근접성을 고려한 게이트 지연 시간 모델)

  • Shin, Jang-Hyuk;Kim, Ju-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.32-39
    • /
    • 2010
  • Conventional cell characterization does not consider Multiple Input Switching(MIS). Since the impact of MIS on gate delay variation is large, it is not possible to predict the accurate gate delay with the conventional cell characterization. We observed the maximum 46% difference in gate delay due tn MIS. In this paper, we propose a gate delay model considering the delay variation caused by the temporal proximity of MIS. The proposed model calculates the delay variation using the Radial Basis Function. The experimental results show that the proposed method can more accurately predict the gate delay when MIS occurs.

A Study on Static Situation Awareness System with the Aid of Optimized Polynomial Radial Basis Function Neural Networks (최적화된 pRBF 뉴럴 네트워크에 의한 정적 상황 인지 시스템에 관한 연구)

  • Oh, Sung-Kwun;Na, Hyun-Suk;Kim, Wook-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2352-2360
    • /
    • 2011
  • In this paper, we introduce a comprehensive design methodology of Radial Basis Function Neural Networks (RBFNN) that is based on mechanism of clustering and optimization algorithm. We can divide some clusters based on similarity of input dataset by using clustering algorithm. As a result, the number of clusters is equal to the number of nodes in the hidden layer. Moreover, the centers of each cluster are used into the centers of each receptive field in the hidden layer. In this study, we have applied Fuzzy-C Means(FCM) and K-Means(KM) clustering algorithm, respectively and compared between them. The weight connections of model are expanded into the type of polynomial functions such as linear and quadratic. In this reason, the output of model consists of relation between input and output. In order to get the optimal structure and better performance, Particle Swarm Optimization(PSO) is used. We can obtain optimized parameters such as both the number of clusters and the polynomial order of weights connection through structural optimization as well as the widths of receptive fields through parametric optimization. To evaluate the performance of proposed model, NXT equipment offered by National Instrument(NI) is exploited. The situation awareness system-related intelligent model was built up by the experimental dataset of distance information measured between object and diverse sensor such as sound sensor, light sensor, and ultrasonic sensor of NXT equipment.

Recognition of English Calling Cards by Using Projection Method and Enhanced RBE Network

  • Kim, Kwang-Baek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.474-479
    • /
    • 2003
  • In this paper, we proposed the novel method for the recognition of English calling cards by using the projection method and the enhanced RBF (Radial Basis Function) network. The recognition of calling cards consists of the extraction phase of character areas and the recognition phase of extracted characters. In the extraction phase, first of all, noises are removed from the images of calling cards, and the feature areas including character strings are separated from the calling card images by using the horizontal smearing method and the 8-directional contour tracking method. And using the image projection method, the feature areas are split into the areas of individual characters. We also proposed the enhanced RBF network that organizes the middle layer effectively by using the enhanced ART1 neural network adjusting the vigilance threshold dynamically according to the homogeneity between patterns. In the recognition phase, the proposed neural network is applied to recognize individual characters. Our experiment result showed that the proposed recognition algorithm has higher success rate of recognition and faster learning time than the existing neural network based recognition.

A Study on RBFNN-Based Static Situation Awareness : A Comparative Analysis of PSO and DE Algorithms (RBF 뉴럴 네트워크 기반 정적 상황 인지에 관한 연구: PSO 및 DE 비교 해석)

  • Na, Hyun-Suk;Kim, Wook-Dong;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1954-1955
    • /
    • 2011
  • 본 연구에서는 교육용으로 제작된 NXT 장비에 설치된 Light 센서, Ultrasonic센서, Sound센서를 이용하여 각 거리(10~60cm)에서 5cm 간격으로 각 센서 데이터를 취득하였다. 데이터 취득은 NI(National Instrument)에서 제공하는 LabVIEW Software를 사용하여 각 거리마다 100개의 셈플 데이터를 취득하였다. 취득한 데이터는 제안한 모델의 입력 데이터로 사용하여 실제거리와 모델 출력과의 정확도를 평가 하였다. 본 연구에서 제안한 모델은 지능형 모델 중 퍼지추론 기반의 최적 다항식 RBF 뉴럴네트워크(Radial Basis Function Neural Network; RBFNN)를 설계한다. 제안된 RBFNN은 기존 RBF 뉴럴네트워크를 기반으로 한 구조로, 퍼지추론 메커니즘의 기능적 모듈 동작 특성을 갖도록 정규화 부분을 추가하고, 은닉층과 출력층 사이의 연결가중치를 기존 상수항에서 선형식(first order)으로 확장한 형태이다. 또한 최적의 알고리즘인 PSO(Paticle Swarm Optimization)와 DE(Differential Evolution)을 이용하여 제안된 모델의 파라미터들을 동정하여 성능을 비교, 분석 하였다.

  • PDF