• Title/Summary/Keyword: Radarsat-l

Search Result 16, Processing Time 0.026 seconds

A Study on Geometric Correction Method for RADARSAT-1 SAR Satellite Images Acquired by Same Satellite Orbit (동일궤도 다중 RADARSAT-1 SAR 위성영상의 기하보정방법에 관한 연구)

  • Song, Yeong-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.605-612
    • /
    • 2010
  • Numberous satellites have monitored the Earth in order to detect changes in a large area. These satellites provide orbit information such as ephemeris data, RPC coefficients and etc. besides image data. If we can use such orbit data afforded by satellite, we can reduce the number of control point for geo-referencing. This paper shows the efficient geometric correction method of strip-satellite RADARSAT-l SAR images acquired by same orbit using ephemeris data, single control point and virtual control points. For accuracy analysis of proposed method, this paper compared the image geometrically corrected by the proposed method to the image corrected by ERDAS Imagine.

Relationship between RADARSAT Backscattering Coefficient and Rice Growth

  • Hong, Suk-Young;Hong, Sang-Hoon;Rim, Sang-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.2
    • /
    • pp.109-116
    • /
    • 2000
  • This study was carried out to assess the use of RADARSAT data which is C-band with HH polarization for the rice growth monitoring in Korea. Nine time-series data were taken by shallow incidence angle (standard beam mode 5 or 6) during rice growing season. And then, backscattering coefficients ($\sigma$$^{\circ}$) were extracted by calibration process for comparing with rice growth parameters such as plant height, leaf area index(LAI), and fresh and dry biomass. Field experimental data concerned with rice growth were collected 8 times for the ground truth at the study area, Tangjin, Chungnam, Korea. At the beginning of rice growth, backscattering coefficients were ranged from -l6~-l3dB when rice fields were not covered with rice canopy and flooded. At the maximum vegetative stage of rice, backscattering coefficients of the rice field were the highest ranging from -4.4dB~-3.1dB. The temporal variation of backscattering coefficient($\sigma$$^{\circ}$) in rice field was significant in this study. Backscattering coefficient ($\sigma$$^{\circ}$) of rice field was a little bit lower again after heading stage than before. This results show RADARSAT data is promising for rice monitoring.

Automatic Detection Approach of ship using RADARSAT-l

  • Kwon Seung-Joon;Yoo KiYun;Kim Kyoung-Ok;Yang Chan-Su
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.290-293
    • /
    • 2005
  • This paper proposes and evaluates a new approach to detect ships as targets from Radarslit-l SAR (Synthetic Aperture Radar) imagery in the vicinity of Korean peninsula. To be more specific, a labeling technique and morphological filtering in conjunction with some other methods are employed to automatically detect the ships. From the test, the ships are revealed to be detected. For ground truth data, information from a radar system is used, which allows assessing accuracy of the approach. The results showed that the proposed approach has the high potential in automatically detecting the ships

  • PDF

Decision Level Fusion of Multifrequency Polarimetric SAR Data Using Target Decomposition based Features and a Probabilistic Ratio Model (타겟 분해 기반 특징과 확률비 모델을 이용한 다중 주파수 편광 SAR 자료의 결정 수준 융합)

  • Chi, Kwang-Hoon;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.89-101
    • /
    • 2007
  • This paper investigates the effects of the fusion of multifrequency (C and L bands) polarimetric SAR data in land-cover classification. NASA JPL AIRSAR C and L bands data were used to supervised classification in an agricultural area to simulate the integration of ALOS PALSAR and Radarsat-2 SAR data to be available. Several scattering features derived from target decomposition based on eigen value/vector analysis were used as input for a support vector machines classifier and then the posteriori probabilities for each frequency SAR data were integrated by applying a probabilistic ratio model as a decision level fusion methodology. From the case study results, L band data had the proper amount of penetration power and showed better classification accuracy improvement (about 22%) over C band data which did not have enough penetration. When all frequency data were fused for the classification, a significant improvement of about 10% in overall classification accuracy was achieved thanks to an increase of discrimination capability for each class, compared with the case of L band Shh data.

InSAR Studies of Alaska Volcanoes

  • Lu Zhong;Wicks Chuck;Dzurisin Dan;Power John
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.59-72
    • /
    • 2005
  • Interferometric synthetic aperture radar (InSAR) is a remote sensing technique capable of measuring ground surface deformation with sub-centimeter precision and spatial resolution in tens-of­meters over a large region. This paper describes basics of InSAR and highlights our studies of Alaskan volcanoes with InSAR images acquired from European ERS-l and ERS-2, Canadian Radarsat-l, and Japanese JERS-l satellites.

InSAR Studies of Alaskan Volcanoes

  • Lu Zhong;Wicks Chuck;Dzurisin Dan;Power John
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.47-52
    • /
    • 2004
  • Interferometric synthetic aperture radar (InSAR) is a remote sensing technique capable of measuring ground surface deformation with sub-centimeter precision and spatial resolution in tens-of-meters over a large region. This paper highlights our on-going investigations of Aleutian volcanoes with SAR images acquired from European ERS-1 and ERS-2, Canadian Radarsat-l, and Japanese JERS-l satellites.

  • PDF

INVESTIGATION OF BAIKDU-SAN VOLCANO WITH SPACE-BORNE SAR SYSTEM

  • Kim, Duk-Jin;Feng, Lanying;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.148-153
    • /
    • 1999
  • Baikdu-san was a very active volcano during the Cenozoic era and is believed to be formed in late Cenozoic era. Recently it was also reported that there was a major eruption in or around 1002 A.D. and there are evidences which indicate that it is still an active volcano and a potential volcanic hazard. Remote sensing techniques have been widely used to monitor various natural hazards, including volcanic hazards. However, during an active volcanic eruption, volcanic ash can basically cover the sky and often blocks the solar radiation preventing any use of optical sensors. Synthetic aperture radar(SAR) is an ideal tool to monitor the volcanic activities and lava flows, because the wavelength of the microwave signal is considerably longer that the average volcanic ash particle size. In this study we have utilized several sets of SAR data to evaluate the utility of the space-borne SAR system. The data sets include JERS-1(L-band) SAR, and RADARSAT(C-band) data which included both standard mode and the ScanSAR mode data sets. We also utilized several sets of auxiliary data such as local geological maps and JERS-1 OPS data. The routine preprocessing and image processing steps were applied to these data sets before any attempts of classifying and mapping surface geological features. Although we computed sigma nought ($\sigma$$^{0}$) values far the standard mode RADARSAT data, the utility of sigma nought image was minimal in this study. Application of various types of classification algorithms to identify and map several stages of volcanic flows was not very successful. Although this research is still in progress, the following preliminary conclusions could be made: (1) sigma nought (RADARSAT standard mode data) and DN (JERS-1 SAR and RADARSAT ScanSAR data) have limited usefulness for distinguishing early basalt lava flows from late trachyte flows or later trachyte flows from the old basement granitic rocks around Baikdu-san volcano, (2) surface geological structure features such as several faults and volcanic lava flow channels can easily be identified and mapped, and (3) routine application of unsupervised classification methods cannot be used for mapping any types of surface lava flow patterns.

  • PDF

Improvement of Small Baseline Subset (SBAS) Algorithm for Measuring Time-series Surface Deformations from Differential SAR Interferograms (차분 간섭도로부터 지표변위의 시계열 관측을 위한 개선된 Small Baseline Subset (SBAS) 알고리즘)

  • Jung, Hyung-Sup;Lee, Chang-Wook;Park, Jung-Won;Kim, Ki-Dong;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.165-177
    • /
    • 2008
  • Small baseline subset (SBAS) algorithm has been recently developed using an appropriate combination of differential interferograms, which are characterized by a small baseline in order to minimize the spatial decorrelation. This algorithm uses the singular value decomposition (SVD) to measure the time-series surface deformation from the differential interferograms which are not temporally connected. And it mitigates the atmospheric effect in the time-series surface deformation by using spatially low-pass and temporally high-pass filter. Nevertheless, it is not easy to correct the phase unwrapping error of each interferogram and to mitigate the time-varying noise component of the surface deformation from this algorithm due to the assumption of the linear surface deformation in the beginning of the observation. In this paper, we present an improved SBAS technique to complement these problems. Our improved SBAS algorithm uses an iterative approach to minimize the phase unwrapping error of each differential interferogram. This algorithm also uses finite difference method to suppress the time-varying noise component of the surface deformation. We tested our improved SBAS algorithm and evaluated its performance using 26 images of ERS-1/2 data and 21 images of RADARSAT-1 fine beam (F5) data at each different locations. Maximum deformation amount of 40cm in the radar line of sight (LOS) was estimated from ERS-l/2 datasets during about 13 years, whereas 3 cm deformation was estimated from RADARSAT-1 ones during about two years.

Crop classification using multiple frequency polarimetric SAR data (다중 주파수 편광 SAR 자료를 이용한 농작물 분류)

  • Park, No-Wook;Chi, Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.234-237
    • /
    • 2007
  • 이 연구에서는 C 밴드와 L 밴드 다편광 NASA JPL AirSAR 자료를 농작물 구분에 사용함에 있어서 자료 융합의 효과를 살펴보고자 하였다. Target decomposition으로부터 얻어지는 산란특성과 관련된 특징들을 입력으로 support vector machines을 개별 파장대 편광 SAR 자료의 분류에 이용하였으며 C 밴드와 L 밴드 자료의 사후확률을 ${\tau}$모델을 이용하여 융합하였다. 적용 결과 L 밴드 자료가 C 밴드 자료에 비해 농작물 구분에 적절한 투과 심도를 나타내어 상대적으로 높은 분류 정확도를 나타내었지만,자료 융합을 통해 보다 향상된 분류 정확도를 얻을 수 있었다. 이 연구에서 제시된 방법론은 앞으로 이용이 가능할 C 밴드 Radarsat-2 자료와 L 밴드 ALOS 자료에 적용이 가능할 것으로 판단된다.

  • PDF

New Generation of Imaging Radars for Earth and Planetary Science Applications

  • Wooil M. Moon
    • Proceedings of the International Union of Geodesy And Geophysics Korea Journal of Geophysical Research Conference
    • /
    • 2003.05a
    • /
    • pp.14-14
    • /
    • 2003
  • SAR (Synthetic Aperture Radar) is an imaging radar which can scan and image Earth System targets without solar illumination. Most Earth observation Shh systems operate in X-, C-, S-, L-, and P-band frequencies, where the shortest wavelength is approximately 1.5 cm. This means that most opaque objects in the SAR signal path become transparent and SAR systems can image the planetary surface targets without sunlight and through rain, snow and/or even volcanic ash clouds. Most conventional SAR systems in operation, including the Canada's RADARSAT-1, operate in one frequency and in one polarization. This has resulted in black and with images, with which we are familiar now. However, with the launching of ENVTSAT on March 1 2002, the ASAR system onboard the ENVISAT can image Earth's surface targets with selected polarimetric signals, HH+VV, HH+VH, and VV+HV. In 2004, Canadian Space Agency will launch RADARSAT-II, which is C-band, fully polarimetric HH+VV+VH+HV. Almost same time, the NASDA of Japan will launch ALOS (Advanced land Observation Satellite) which will carry L-band PALSAR system, which is again fully polarimetric. This means that we will have at least three fully polarimetric space-borne SAR system fur civilian operation in less than one year. Are we then ready for this new all weather Earth Observation technology\ulcorner Actual imaging process of a fully polarimetric SAR system is not easy to explain. But, most Earth system scientists, including geologists, are familiar with polarization microscopes and other polarization effects in nature. The spatial resolution of the new generation of SAR systems have also been steadily increased, almost to the limit of highest optical resolution. In this talk some new applications how they are used for Earth system observation purpose.

  • PDF