• Title/Summary/Keyword: Radar-echo

Search Result 102, Processing Time 0.028 seconds

Design of Event and Echo Classifier Realized with the Aid of Interval Type-2 FCM based RBFNN : Comparative Studies of LSE and WLSE (Interval Type-2 FCM based RBFNN의 도움으로 실현된 사례 및 에코 분류기 설계 : LSE와 WLSE의 비교연구)

  • Song, Chan-Seok;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1347-1348
    • /
    • 2015
  • 본 논문에서는 기상레이더 데이터에서 섞여있는 강수에코 및 비강수에코를 분류하기 위하여 Interval Type-2 FCM based RBFNN의 도움으로 사례 및 에코 분류기의 설계를 제안한다. 학습과 테스트 데이터는 현재 기상청에서 사용하는 UF radar data를 사용하였으며, 사례 분류기와 에코패턴 분류기의 데이터를 각각 생성한다. 전처리 과정인 사례 분류를 통하여 강수사례 혹은 비강수사례를 분류하여 강수사례일 경우 에코패턴분류를 진행하며, 비강수사례일 경우 데이터에 관측된 모든 반사도 값을 제거한다. 사례 및 에코 분류기는 Interval Type-2 FCM based RBFNN을 통하여 패턴분류를 진행하며, 패턴분류 성능을 확인한다. 또한 후반부 파라미터의 동정 시, 각 규칙에 파라미터를 전역적으로 구하는 LSE와 각 규칙에 대한 파라미터를 독립적으로 구하는 WSLE의 비교연구를 수행한다. 분류기의 성능을 확인하기 위하여 사례 분류 후 에코패턴분류의 결과는 현재 기상청에서 사용하고는 품질검사(QC) 데이터와 비교하여 평가하였다.

  • PDF

Development of Inspection and Diagnosis System for Safety and Maintenance in Tunnel (터널 유지관리를 위한 안전진단시스템 개발에 관한 연구)

  • Kim, Young-Geun;Baek, Ki-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.1
    • /
    • pp.37-50
    • /
    • 2001
  • Recently, as tunnel structure is getting old, many deformations and defects have been occurred. As tunnel has the characteristics of underground structure, the estimation of the cause of deformation is very difficult. Then, it is necessary to investigate the state of tunnel lining and to estimate the deformation cause and safety for tunnel. In this study, inspection and diagnosis system for effective maintenance in tunnel was researched. Firstly, non-destructive techniques such as GPR (ground penetrating radar), impact echo test, and infrared thermal techniques were applied to tunnel lining inspection. Tunnel lining analysis system was developed to analyze the stability of tunnel. And, tunnel soundness evaluation system was developed to find the probable causes and indicate the method for repair and reinforcement for tunnel.

  • PDF

Analysis of Windowing Effects in the Estimation of Beat Frequencies (비트 주파수 추정에서의 윈도잉 효과 분석)

  • Lee, Jong-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.668-670
    • /
    • 2010
  • It is necessary to estimate the range and Doppler shifted spectrum for the extraction of useful information from the return echoes in the frequency modulated continuous wave radar systems used for the remote sending purpose such as detection of moving targets. However, the spectrum estimation using the FFT method causes the very large sidolobes of clutter masking the essential signal information if the acquisition time of an echo signal is pretty short. Therefore, in this paper, the efficient data windowing method is investigated to suppress the strong sidelobe levels of the clutter and results are analyzed.

  • PDF

Partitioning Bimodal Spectrum Peak in Raw Data of UHF Wind Profiler (UHF 윈드프로파일러 원시 자료의 이중 스펙트럼 첨두 분리)

  • Jo, Won-Gi;Kwon, Byung-Hyuk;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • In addition to non-meteorological echoes, meteorological echoes with large scattering effects, such as precipitation, cause errors in wind data measured by wind profiler. In the rainfall situation, the Doppler spectrum of wind profiler shows both the rainfall signal and the atmospheric signal as two peaks. The vertical radial velocity is very large due to the falling rain drop. The radial velocity contaminated by rainfall decreases the accuracy of the horizontal wind vector and leads to inaccurate weather analysis. In this study, we developed an algorithm to process raw data of wind profiler and distinguished rainfall signal and wind signal by partitioning bimodal peak for Doppler spectrum in rainfall environment.

Development of X-Band weather radar quality control technology for non-weather echo removal (비기상에코 제거를 위한 X-밴드 기상레이더 품질관리 기술 개발)

  • Jin-woo Park;Sun-Jin Mo;Ji-Young Gu;Seungwoo Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.114-114
    • /
    • 2023
  • 기상레이더는 대류권의 기상 관측에 널리 사용되며, 기상예보를 비롯하여 항공, 농업, 수문학 등 다양한 분야에서 활용하고 있다. 기상레이더센터는 SSPA(Solid State Power Amplifier) 기반 X-Band 주파수대역(9GHz)을 사용하는 연구용 소형기상레이더 관측망을 운영하고 있다. 주로 수도권 저층 대기에서 발생하는 위험 기상현상을 1분 단위로 빠르게 관측하면서 정확한 강수 정보생산을 위한 연구를 수행하고 있다. 레이더 관측 자료는 전파를 이용하여 넓은 범위에 분포하는 눈, 비, 우박 등 대기수상체를 관측하여, 강수량 추정을 통해 강수 정보를 생산한다. 이에 따라 레이더 관측 자료의 정확성과 신뢰도를 높이기 위해서 레이더 품질관리 기술 적용은 필수적이다. 기상레이더센터는 소형기상레이더로 관측한 이중편파 자료의 효과적인 품질관리를 위한 각종 자료처리 모듈을 개발하여, 실시간 자료처리 프로그램에 적용하였다. 우선, 저층 대기 관측 시 기상에코와 더불어 강한 반사도로 나타나는 지형에코를 판별하는 모듈과 선형 또는 쐐기형태의 전파간섭에코를 비롯한 비기상에코를 효과적으로 제거하는 기술을 개발하였다. 다음으로, X-Band 주파수대역 기상레이더 관측 자료의 취약점인 강한 강수 시 발생하는 반사도 감쇠 현상을 보정하기 위한 기술도 개발하였다. 소형기상레이더 품질관리 개발과 적용을 통하여 생산된 자료는 HSR(Hybrid Surface Rainfall), 레이더 강수량 추정, 대기수상체 등 다양한 기상 산출물 생산과 동시에 기상 감시 및 연구 분야에 효과적으로 활용하고 있다.

  • PDF

Extended Target State Vector Estimation using AKF (적응형 칼만 필터를 이용한 확장 표적의 상태벡터 추정 기법)

  • Cho, Doo-Hyun;Choi, Han-Lim;Lee, Jin-Ik;Jeong, Ki-Hwan;Go, Il-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.507-515
    • /
    • 2015
  • This paper proposes a filtering method for effective state vector estimation of highly maneuvering target. It is needed to hit the point called 'sweet spot' to increase the kill probability in missile interception. In paper, a filtering method estimates the length of a moving target tracked by a frequency modulated continuous wave (FMCW) radar. High resolution range profiles (HRRPs) is generated from the radar echo signal and then it's integrated into proposed filtering method. To simulate the radar measurement which is close to real, the study on the properties of scattering point of the missile-like target has been conducted with ISAR image for different angle. Also, it is hard to track the target efficiently with existing Kalman filters which has fixed measurement noise covariance matrix R. Therefore the proposed method continuously updates the covariance matrix R with sensor measurements and tracks the target. Numerical simulations on the proposed method shows reliable results under reasonable assumptions on the missile interception scenario.

Performance Tests of 3D Data Models for Laser Radar Simulation (레이저레이더 시뮬레이션을 위한 3차원 데이터 모델의 성능 테스트)

  • Kim, Geun-Han;Kim, Hye-Young;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.97-107
    • /
    • 2009
  • Experiments using real guided weapons for the development of the LADAR(Laser radar) are not practical. Therefore, we need computing environment that can simulate the 3D detections by LADAR. Such simulations require dealing with large sized data representing buildings and terrain over large area. And they also need the information of 3D target objects, for example, material and echo rate of building walls. However, currently used 3D models are mostly focused on visualization maintained as file-based formats and do not contain such semantic information. In this study, as a solution to these problems, a method to use a spatial DBMS and a 3D model suitable for LADAR simulation is suggested. The 3D models found in previous studies are developed to serve different purposes, thus, it is not easy to choose one among them which is optimized for LADAR simulation. In this study, 4 representative 3D models are first defined, each of which are tested for different performance scenarios. As a result, one model, "Body-Face", is selected as being the most suitable model for the simulation. Using this model, a test simulation is carried out.

  • PDF

Application of Very Short-Term Rainfall Forecasting to Urban Water Simulation using TREC Method (TREC기법을 이용한 초단기 레이더 강우예측의 도시유출 모의 적용)

  • Kim, Jong Pil;Yoon, Sun Kwon;Kim, Gwangseob;Moon, Young Il
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.409-423
    • /
    • 2015
  • In this study the very short-term rainfall forecasting and storm water forecasting using the weather radar data were implemented in an urban stream basin. As forecasting time increasing, the very short-term rainfall forecasting results show that the correlation coefficient was decreased and the root mean square error was increased and then the forecasting model accuracy was decreased. However, as a result of the correlation coefficient up to 60-minute forecasting time is maintained 0.5 or higher was obtained. As a result of storm water forecasting in an urban area, the reduction in peak flow and outflow volume with increasing forecasting time occurs, the peak time was analyzed that relatively matched. In the application of storm water forecasting by radar rainfall forecast, the errors has occurred that we determined some of the external factors. In the future, we believed to be necessary to perform that the continuous algorithm improvement such as simulation of rapid generation and disappearance phenomenon by precipitation echo, the improvement of extreme rainfall forecasting in urban areas, and the rainfall-runoff model parameter optimizations. The results of this study, not only urban stream basin, but also we obtained the observed data, and expand the real-time flood alarm system over the ungaged basins. In addition, it is possible to take advantage of development of as multi-sensor based very short-term rainfall forecasting technology.

Evaluation of bonding state of shotcrete lining using nondestructive testing methods - experimental analysis (비파괴 시험 기법을 이용한 숏크리트 배면 접착상태 평가에 관한 실험적 연구)

  • Song, Ki-Il;Cho, Gye-Chun;Chang, Seok-Bue;Hong, Eun-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.71-83
    • /
    • 2009
  • Shotcrete is an important primary support for tunnelling in rock. The quality control of shotcrete is a core issue in the safe construction and maintenance of tunnels. Although shotcrete may be applied well initially onto excavated rock surfaces, it is affected by blasting, rock deformation and shrinkage and can debond from the excavated surface, causing problems such as corrosion, buckling, fracturing and the creation of internal voids. This study suggests an effective non-destructive evaluation method of the tunnel shotcrete bonding state applied onto hard rocks using the impact-echo (IE) method and ground penetration radar (GPR). To verify previous numerical simulation results, experimental study carried out. Generally, the bonding state of shotcrete can be classified into void, debonded, and fully bonded. In the laboratory, three different bonding conditions were modeled. The signals obtained from the experimental IE tests were analyzed at the time domain, frequency domain, and time-frequency domain (i.e., the Short- Time Fourier transform). For all cases in the analyses, the experimental test results were in good agreement with the previous numerical simulation results, verifying this approach. Both the numerical and experimental results suggest that the bonding state of shotcrete can be evaluated through changes in the resonance frequency and geometric damping ratio in a frequency domain analysis, and through changes in the contour shape and correlation coefficient in a time-frequency analysis: as the bonding state worsens in hard rock condition, the autospectral density increases, the geometric damping ratio decreases, and the contour shape in the time-frequency domain has a long tail parallel to the time axis. The correlation coefficient can be effectively applied for a quantitative evaluation of bonding state of tunnel shotcrete. Finally, the bonding state of shotcrete can be successfully evaluated based on the process suggested in this study.

Vital Sign Detection in a Noisy Environment by Undesirable Micro-Motion (원하지 않는 작은 동작에 의한 잡음 환경 내 생체신호 탐지 기법)

  • Choi, In-Oh;Kim, Min;Choi, Jea-Ho;Park, Jeong-Ki;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.418-426
    • /
    • 2019
  • Recently, many studies on vital sign detection using a radar sensor related to Internet of Things(IoT) smart home systems have been conducted. Because vital signs such as respiration and cardiac rates generally cause micro-motions in the chest or back, the phase of the received echo signal from a target fluctuates according to the micro-motion. Therefore, vital signs are usually detected via spectral analysis of the phase. However, the probability of false alarms in cardiac rate detection increases as a result of various problems in the measurement environment, such as very weak phase fluctuations caused by the cardiac rate. Therefore, this study analyzes the difficulties of vital sign detection and proposes an efficient vital sign detection algorithm consisting of four main stages: 1) phase decomposition, 2) phase differentiation and filtering, 3) vital sign detection, and 4) reduction of the probability of false alarm. Experimental results using impulse-radio ultra-wideband radar show that the proposed algorithm is very efficient in terms of computation and accuracy.