• 제목/요약/키워드: Radar-based rainfall prediction

검색결과 30건 처리시간 0.029초

Advanced Uses of Weather radar into Analysis and Prediction of Rainfall for Hydrological Applications

  • Eiichi Nakakita;Yoshiharu Suzuki;Shuichi Ikebuchi
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2001년도 학술발표회 논문집(I)
    • /
    • pp.35-44
    • /
    • 2001
  • As one of advanced uses of radar, a physically based rainfall prediction method which uses a conceptual rainfall model assimilated by information from volume scanning radar is shown. As another example of advanced utilization of weather radar, results from analyzing a hierarchical time-scale structure in dependency of rainfall distribution en topography are shown.

  • PDF

적대적 생성 신경망을 이용한 레이더 기반 초단시간 강우예측 (Radar-based rainfall prediction using generative adversarial network)

  • 윤성심;신홍준;허재영
    • 한국수자원학회논문집
    • /
    • 제56권8호
    • /
    • pp.471-484
    • /
    • 2023
  • 적대적 생성 신경망 기반의 딥러닝 모델은 학습된 정보를 바탕으로 새로운 정보를 생성하는데 특화되어 있다. 구글 딥마인드에서 개발한 deep generative model of rain (DGMR) 모델은 대규모 레이더 이미지 데이터의 복잡한 패턴과 관계를 학습하여, 예측 레이더 이미지를 생성하는 적대적 생성 신경망 모델이다. 본 연구에서는 환경부 레이더 강우관측자료를 이용하여 DGMR 모델을 학습하고, 2021년 8월 호우사례를 대상으로 적대적 생성 신경망을 이용하여 강우예측을 수행하고 기존 예측기법들과 정확도를 비교하였다. DGMR은 대체적으로 선행 60분까지는 강우 분포 위치가 관측강우와 가장 유사하였으나, 전체 영역에서 강한 강우가 발생한 사례에서는 강우가 지속적으로 발달하는 것으로 예측하는 경향이 있었다. 통계적 평가에서도 DGMR 기법이 1시간 선행예측에서 임계성공지수 0.57~0.79, 평균절대오차 0.57~1.36 mm로 나타나 타 기법 대비 효과적인 강우예측 기법임을 보여주었다. 다만, 생성 결과의 다양성이 부족한 경우가 발생하여 예측 정확도를 저하하므로 다양성을 개선하기 위한 연구와 2시간 이상의 선행예측에 대한 정확도 개선을 위해 물리기반 수치예보모델 예측강우 자료를 이용한 보완이 필요할 것으로 판단되었다.

레이더 강우자료에 의한 홍수 예보 시스템 연구 (Study on Flood Prediction System Based on Radar Rainfall Data)

  • 김원일;오경두;안원식;전병호
    • 한국수자원학회논문집
    • /
    • 제41권11호
    • /
    • pp.1153-1162
    • /
    • 2008
  • 수문학적 해석에 있어 레이더 강우의 활용은 원시자료를 획득하기가 어려울 뿐만 아니라 이를 처리하여 적용하는 과정이 간단하지 않기 때문에 대부분의 연구와 실무적용에 있어 많은 어려움이 있다. 본 연구에서는 레이더 영상자료를 실용적으로 활용하기 위한 방안으로 기상청에서 제공하는 레이더 합성 CAPPI(Constant Altitude Plan Position Indicator) 이미지 자료를 디지털 강우자료로 변환할 수 있는 '레이더 영상 디지털 변환법(RAIDOM, RAdar Image DigitalizatiOn Method)'을 연구 개발하였다. 2006년 7월에 발생한 국지성 집중호우와 한강유역 중상류 지역에 걸쳐 큰 홍수량을 발생시킨 2개의 호우사상에 대하여 레이더 강우자료를 분포형 모형에 적용하여 활용성을 검토하였다. 모의된 홍수수문곡선은 실측치와 잘 일치하였고 RAIDOM과 이를 적용한 분포형 모형이 홍수예보를 위하여 활용될 수 있음을 보여주었다. 이러한 연구를 통하여 수문해석에 있어 레이더 강우에 대한 활용성을 넓히는데 기여할 것으로 기대된다.

레이더-위성자료 이용 다중센서 기반 초단기 강우예측 - 2014년 8월 부산·경남 폭우사례를 중심으로 - (A Multi-sensor basedVery Short-term Rainfall Forecasting using Radar and Satellite Data - A Case Study of the Busan and Gyeongnam Extreme Rainfall in August, 2014-)

  • 장상민;박경원;윤선권
    • 대한원격탐사학회지
    • /
    • 제32권2호
    • /
    • pp.155-169
    • /
    • 2016
  • 본 연구에서는 2014년 8월 부산 경남 집중호우 사례를 대상으로 레이더와 위성결합 Multi-sensor Blending 초단기 강우예측을 실시하였다. 레이더 최적 Z-R관계는 열대형 강수 Z-R관계식($Z=32R^{1.65}$)을 적용하였으며, 20 mm/h 이상의 강한 강우에서 강수량 추정 정확도가 향상됨을 확인하였다. 또한 60 mm/h 이상 강한 폭우사상에 대하여 천리안 위성자료와 레이더자료를 합성한 결과 정량강수 추정 성능이 향상됨을 확인하였다. 지속시간별 강우예측 정확도 검증을 위하여 AWS, MAPLE 자료와 비교결과, 강우예측 1시간까지 약 50%이상의 지점강우예측 정확도를 확보하였으며, 10분 단위 예측시간별 상관계수는 0.80~0.53, 평균제곱근오차는 3.99~6.43 mm/h로 분석되었다. 본 연구 결과 레이더와 위성정보를 이용한 보다 신뢰성 있는 강우예측 정보 활용이 가능할 것으로 판단되며, 향후 지속적인 사례연구와 레이더 위성 활용 정량강수량 추정 및 예측, 그리고 위성강수 추정 알고리즘 개선의 노력이 필요하다.

실시간 기상자료를 이용한 다지점 강우 예측모형 연구 (A Study on Multi-site Rainfall Prediction Model using Real-time Meteorological Data)

  • 정재성;이장춘;박영기
    • 한국환경과학회지
    • /
    • 제6권3호
    • /
    • pp.205-211
    • /
    • 1997
  • For the prediction of multi-site rainfall with radar data and ground meteorological data, a rainfall prediction model was proposed, which uses the neural network theory, a kind of artifical Intelligence technique. The Input layer of the prediction model was constructed with current ground meteorological data, their variation, moving vectors of rain- fall field and digital terrain of the measuring site, and the output layer was constructed with the predicted rainfall up to 3 hours. In the application of the prediction model to the Pyungchang river basin, the learning results of neural network prediction model showed more Improved results than the parameter estimation results of an existing physically based model. And the proposed model comparisonally well predicted the time distribution of ralnfall.

  • PDF

Uncertainty investigation and mitigation in flood forecasting

  • Nguyen, Hoang-Minh;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.155-155
    • /
    • 2018
  • Uncertainty in flood forecasting using a coupled meteorological and hydrological model is arisen from various sources, especially the uncertainty comes from the inaccuracy of Quantitative Precipitation Forecasts (QPFs). In order to improve the capability of flood forecast, the uncertainty estimation and mitigation are required to perform. This study is conducted to investigate and reduce such uncertainty. First, ensemble QPFs are generated by using Monte - Carlo simulation, then each ensemble member is forced as input for a hydrological model to obtain ensemble streamflow prediction. Likelihood measures are evaluated to identify feasible member. These members are retained to define upper and lower limits of the uncertainty interval and assess the uncertainty. To mitigate the uncertainty for very short lead time, a blending method, which merges the ensemble QPFs with radar-based rainfall prediction considering both qualitative and quantitative skills, is proposed. Finally, blending bias ratios, which are estimated from previous time step, are used to update the members over total lead time. The proposed method is verified for the two flood events in 2013 and 2016 in the Yeonguol and Soyang watersheds that are located in the Han River basin, South Korea. The uncertainty in flood forecasting using a coupled Local Data Assimilation and Prediction System (LDAPS) and Sejong University Rainfall - Runoff (SURR) model is investigated and then mitigated by blending the generated ensemble LDAPS members with radar-based rainfall prediction that uses McGill algorithm for precipitation nowcasting by Lagrangian extrapolation (MAPLE). The results show that the uncertainty of flood forecasting using the coupled model increases when the lead time is longer. The mitigation method indicates its effectiveness for mitigating the uncertainty with the increases of the percentage of feasible member (POFM) and the ratio of the number of observations that fall into the uncertainty interval (p-factor).

  • PDF

Application of deep convolutional neural network for short-term precipitation forecasting using weather radar-based images

  • Le, Xuan-Hien;Jung, Sungho;Lee, Giha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.136-136
    • /
    • 2021
  • In this study, a deep convolutional neural network (DCNN) model is proposed for short-term precipitation forecasting using weather radar-based images. The DCNN model is a combination of convolutional neural networks, autoencoder neural networks, and U-net architecture. The weather radar-based image data used here are retrieved from competition for rainfall forecasting in Korea (AI Contest for Rainfall Prediction of Hydroelectric Dam Using Public Data), organized by Dacon under the sponsorship of the Korean Water Resources Association in October 2020. This data is collected from rainy events during the rainy season (April - October) from 2010 to 2017. These images have undergone a preprocessing step to convert from weather radar data to grayscale image data before they are exploited for the competition. Accordingly, each of these gray images covers a spatial dimension of 120×120 pixels and has a corresponding temporal resolution of 10 minutes. Here, each pixel corresponds to a grid of size 4km×4km. The DCNN model is designed in this study to provide 10-minute predictive images in advance. Then, precipitation information can be obtained from these forecast images through empirical conversion formulas. Model performance is assessed by comparing the Score index, which is defined based on the ratio of MAE (mean absolute error) to CSI (critical success index) values. The competition results have demonstrated the impressive performance of the DCNN model, where the Score value is 0.530 compared to the best value from the competition of 0.500, ranking 16th out of 463 participating teams. This study's findings exhibit the potential of applying the DCNN model to short-term rainfall prediction using weather radar-based images. As a result, this model can be applied to other areas with different spatiotemporal resolutions.

  • PDF

시간 연속성을 고려한 딥러닝 기반 레이더 강우예측 (Radar rainfall prediction based on deep learning considering temporal consistency)

  • 신홍준;윤성심;최재민
    • 한국수자원학회논문집
    • /
    • 제54권5호
    • /
    • pp.301-309
    • /
    • 2021
  • 본 연구에서는 시계열 순서의 의미가 희석될 수 있는 기존의 U-net 기반 딥러닝 강우예측 모델의 성능을 개선하고자 하였다. 이를 위해서 데이터의 연속성을 고려한 ConvLSTM2D U-Net 신경망 구조를 갖는 모델을 적용하고, RainNet 모델 및 외삽 기반의 이류모델을 이용하여 예측정확도 개선 정도를 평가하였다. 또한 신경망 기반 모델 학습과정에서의 불확실성을 개선하기 위해 단일 모델뿐만 아니라 10개의 앙상블 모델로 학습을 수행하였다. 학습된 신경망 강우예측모델은 현재를 기준으로 과거 30분 전까지의 연속된 4개의 자료를 이용하여 10분 선행 예측자료를 생성하는데 최적화되었다. 최적화된 딥러닝 강우예측모델을 이용하여 강우예측을 수행한 결과, ConvLSTM2D U-Net을 사용하였을 때 예측 오차의 크기가 가장 작고, 강우 이동 위치를 상대적으로 정확히 구현하였다. 특히, 앙상블 ConvLSTM2D U-Net이 타 예측모델에 비해 높은 CSI와 낮은 MAE를 보이며, 상대적으로 정확하게 강우를 예측하였으며, 좁은 오차범위로 안정적인 예측성능을 보여주었다. 다만, 특정 지점만을 대상으로 한 예측성능은 전체 강우 영역에 대한 예측성능에 비해 낮게 나타나, 상세한 영역의 강우예측에 대한 딥러닝 강우예측모델의 한계도 확인하였다. 본 연구를 통해 시간의 변화를 고려하기 위한 ConvLSTM2D U-Net 신경망 구조가 예측정확도를 높일 수 있었으나, 여전히 강한 강우영역이나 상세한 강우예측에는 공간 평활로 인한 합성곱 신경망 모델의 한계가 있음을 확인하였다.

심층신경망을 이용한 레이더 영상 학습 기반 초단시간 강우예측 (Very short-term rainfall prediction based on radar image learning using deep neural network)

  • 윤성심;박희성;신홍준
    • 한국수자원학회논문집
    • /
    • 제53권12호
    • /
    • pp.1159-1172
    • /
    • 2020
  • 본 연구에서는 강우예측을 위해 U-Net과 SegNet에 기반한 합성곱 신경망 네트워크 구조에 장기간의 국내 기상레이더 자료를 활용하여 심층학습기반의 강우예측을 수행하였다. 또한, 기존 외삽기반의 강우예측 기법인 이류모델의 결과와 비교 평가하였다. 심층신경망의 학습 및 검정을 위해 2010부터 2016년 동안의 기상청 관악산과 광덕산 레이더의 원자료를 수집, 1 km 공간해상도를 갖는 480 × 480의 픽셀의 회색조 영상으로 변환하여 HDF5 형태의 데이터를 구축하였다. 구축된 데이터로 30분 전부터 현재까지 10분 간격의 연속된 레이더 영상 4개를 이용하여 10분 후의 강수량을 예측하도록 심층신경망 모델을 학습하였으며, 학습된 심층신경망 모델로 60분의 선행예측을 수행하기 위해 예측값을 반복 사용하는 재귀적 방식을 적용하였다. 심층신경망 예측모델의 성능 평가를 위해 2017년에 발생한 24개의 호우사례에 대해 선행 60분까지 강우예측을 수행하였다. 임계강우강도 0.1, 1, 5 mm/hr에서 평균절대오차와 임계성공지수를 산정하여 예측성능을 평가한 결과, 강우강도 임계 값 0.1, 1 mm/hr의 경우 MAE는 60분 선행예측까지, CSI는 선행예측 50분까지 참조 예측모델인 이류모델이 보다 우수한 성능을 보였다. 특히, 5 mm/hr 이하의 약한 강우에 대해서는 심층신경망 예측모델이 이류모델보다 대체적으로 좋은 성능을 보였지만, 5 mm/hr의 임계 값에 대한 평가결과 심층신경망 예측모델은 고강도의 뚜렷한 강수 특징을 예측하는 데 한계가 있었다. 심층신경망 예측모델은 예측시간이 길어질수록 공간 평활화되는 경향이 뚜렷해지며, 이로 인해 강우 예측의 정확도가 저하되었다. 이류모델은 뚜렷한 강수 특성을 보존하기 때문에 강한 강도 (>5 mm/hr)에 대해 심층신경망 예측모델을 능가하지만, 강우 위치가 잘못 이동하는 경향이 있다. 본 연구결과는 이후 심층신경망을 이용한 레이더 강우 예측기술의 개발과 개선에 도움이 될 수 있을 것으로 판단된다. 또한, 본 연구에서 구축한 대용량 기상레이더 자료는 향후 후속연구에 활용될 수 있도록 개방형 저장소를 통해 제공될 예정이다.

이중편파레이더 시뮬레이터 개발을 위한 2차원 영상우적계 관측자료의 활용가능성 연구 (Study on the Application of 2D Video Disdrometer to Develope the Polarimetric Radar Data Simulator)

  • 김해림;박혜숙;박향숙;박종서
    • 대기
    • /
    • 제24권2호
    • /
    • pp.173-188
    • /
    • 2014
  • The KMA has cooperated with the Oklahoma University in USA to develop a Polarimetric Radar Data (PRD) simulator to improve the microphysical processes in Korea Local Analysis and Prediction System (KLAPS), which is critical for the utilization of PRD into Numerical Weather Prediction (NWP) field. The simulator is like a tool to convert NWP data into PRD, so it enables us to compare NWP data with PRD directly. The simulator can simulate polarimetric radar variables such as reflectivity (Z), differential reflectivity ($Z_{DR}$), specific differential phase ($K_{DP}$), and cross-correlation coefficient (${\rho}_{hv}$) with input of the Drop Size Distribution (DSD) and scattering calculation of the hydrometeors. However, the simulator is being developed based on the foreign observation data, therefore the PRD simulator development reflecting rainfall characteristics of Korea is needed. This study analyzed a potential application of the 2-Dimension Video Disdrometer (2DVD) data by calculating the raindrop axis ratio according to the rain-types to reflect Korea's rainfall characteristics into scattering module in the simulator. The 2DVD instrument measures the precipitation DSD including the fall velocity and the shape of individual raindrops. We calculated raindrop axis ratio for stratiform, convective and mixed rainfall cases after checking the accuracy of 2DVD data, which usually represent the scattering characteristics of precipitation. The raindrop axis ratio obtained from 2DVD data are compared with those from foreign database in the simulator. The calculated the dual-polarimetric radar variables from the simulator using the obtained raindrop axis ratio are also compared with in situ dual-polarimetric observation data at Bislsan (BSL). 2DVD observation data show high accuracies in the range of 0.7~4.8% compared with in situ rain gauge data which represents 2DVD data are sufficient for the use to simulator. There are small differences of axis ratio in the diameter below 1~2 mm and above 4~5 mm, which are more obvious for bigger raindrops especially for a strong convective rainfall case. These differences of raindrop axis ratio between domestic and foreign rainfall data base suggest that the potential use of disdrometer observation can develop of a PRD simulated suitable to the Korea precipitation system.