• Title/Summary/Keyword: Radar system

Search Result 1,607, Processing Time 0.025 seconds

Application of Ground Penetrating Radar for Archaeological Monuments (지하레이다를 이용한 고고학 탐사)

  • Shon, Howoong
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.745-752
    • /
    • 1996
  • A ground penetrating radar survey with a 500 MHz radar antenna was applied to make archaeological investigation in Nakajima of Ishikawa Prefecture, Japan. The ability of the radar system to aid in the archaeological preservation of burial ground was the primary concern of the experiments. The average variance of the radar wave returned from progressively deeper reflectors in a tomb were contoured at 2.4 nanoseconds intervals. The results of analysis indicates the location of trenches and the coffin area at the tomb site. The orientation of the coffin is dearly defined on contour maps made below 9.6 nanoseconds horizon. The general features detected by the GPR were also reconfirmed by electric resistivity survey made at the site. The radar was accurate in ascertaining the location, orientation, and the general construction style of the coffin.

  • PDF

Study on Sea Surface Reconstruction Using Sequent Radar Images (연속된 레이더 영상을 이용한 해수면 복원 연구)

  • Park, Jun-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.100-105
    • /
    • 2013
  • This paper presents a sea surface reconstruction method that uses measured radar images by applying filtering techniques and identifying wave characteristics of the surrounding the Ieodo ocean research station using WaveFinder (X-band wave measurement radar), which is installed in the station. In addition, the results obtained from real radar images are used to verify the reconstructed sea surface. WaveFinder is a marine system that was developed to measure wave information in real time. The WaveFinder installed in the station could acquire sequent images for the sea surface at constant time intervals to obtain real time information (Wave height, mean wave period, wave directionality, etc.) for the wave by getting a three-dimensional spectrum by applying an FFT algorithm to the acquired sequent images and wave dispersion relation. In particular, we found the wave height using the SNR (Signal to noise ratio) of the acquired images. The wave information measured by WaveFinder could be verified by comparing and analyzing the results measured using the wave measurement instrument (Sea level monitor) in the station. Additionally, the wave field around the station could be reconstructed through the three-dimensional spectrum and the inverse FFT filtering from the analyzed results for the measured radar images. We verified the applicability of the sea surface reconstruction method by comparing the measured and simulated sea surfaces.

The Robust Artillery Locating Radar Deployment Model Against Enemy' s Attack Scenarios (적 공격시나리오 기반 대포병 표적탐지레이더 배치모형)

  • Lee, Seung-Ryul;Lee, Moon-Gul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.217-228
    • /
    • 2020
  • The ROK Army must detect the enemy's location and the type of artillery weapon to respond effectively at wartime. This paper proposes a radar positioning model by applying a scenario-based robust optimization method i.e., binary integer programming. The model consists of the different types of radar, its available quantity and specification. Input data is a combination of target, weapon types and enemy position in enemy's attack scenarios. In this scenario, as the components increase by one unit, the total number increases exponentially, making it difficult to use all scenarios. Therefore, we use partial scenarios to see if they produce results similar to those of the total scenario, and then apply them to case studies. The goal of this model is to deploy an artillery locating radar that maximizes the detection probability at a given candidate site, based on the probability of all possible attack scenarios at an expected enemy artillery position. The results of various experiments including real case study show the appropriateness and practicality of our proposed model. In addition, the validity of the model is reviewed by comparing the case study results with the detection rate of the currently available radar deployment positions of Corps. We are looking forward to enhance Korea Artillery force combat capability through our research.

Optimal Hierarchical Design Methodology for AESA Radar Operating Modes of a Fighter (전투기 AESA 레이더 운용모드의 최적 계층구조 설계 방법론)

  • Heungseob Kim;Sungho Kim;Wooseok Jang;Hyeonju Seol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.281-293
    • /
    • 2023
  • This study addresses the optimal design methodology for switching between active electronically scanned array (AESA) radar operating modes to easily select the necessary information to reduce pilots' cognitive load and physical workload in situations where diverse and complex information is continuously provided. This study presents a procedure for defining a hidden Markov chain model (HMM) for modeling operating mode changes based on time series data on the operating modes of the AESA radar used by pilots while performing mission scenarios with inherent uncertainty. Furthermore, based on a transition probability matrix (TPM) of the HMM, this study presents a mathematical programming model for proposing the optimal structural design of AESA radar operating modes considering the manipulation method of a hands on throttle-and-stick (HOTAS). Fighter pilots select and activate the menu key for an AESA radar operation mode by manipulating the HOTAS's rotary and toggle controllers. Therefore, this study presents an optimization problem to propose the optimal structural design of the menu keys so that the pilot can easily change the menu keys to suit the operational environment.

Progressive Test and Evaluation Strategy for Verification of KF-X AESA Radar Development (한국형 전투기(KF-X) AESA 레이다 개발 검증을 위한 점진적인 시험평가 전략)

  • Shinyoung Cho;Yongkil Kwak;Hyunseok Oh;Hyesun Ju;Hongwoo Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.387-394
    • /
    • 2024
  • This paper describes a progressive test and evaluation strategy for verification of Korean Fighter eXperimental (KF-X) AESA(Active Electronically Scanned Array) radar development. Three progressive stages of development test and evaluation were officially performed from simulated test conditions to actual operating conditions according to standards: radar function/performance and avionics integration. KF-X AESA radar development is repeatedly verified by progressive stages consisting of five tests: Roof-lab ground test, System Integration Laboratory(SIL) ground test, Flying Test Bed(FTB) test, KF-X ground test, and KF-X flight test. As a result, the risk factor decreases as stages and tests progress. Therefore, development test and evaluation of KF-X AESA radar are successfully performed at low development risk.

A Study on the Effectiveness of Radar Rainfall by Comparing with Flood Inundation Record Map Using KIMSTORM (Grid-based KIneMatic Wave STOrm Runoff Model) (분포형 강우유출모형 KIMSTORM을 이용한 침수실적자료와의 비교를 통한 레이더강우의 효용성 연구)

  • Ahn, So Ra;Jung, Chung Gil;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.11
    • /
    • pp.925-936
    • /
    • 2015
  • The purpose of this study is to explore the effectiveness of dual-polarization radar rainfall by comapring with the flood inundation record map through KIMSTORM(Grid-based KIneMatic wave STOrm Runoff Model). For Namgang dam ($2,293km^2$) watershed, the Bisl dual-polarization radar data for 3 typhoons (Khanun, Bolaven, Sanba) and 1 heavy rain event in 2012 were prepared. For both 28 ground rainfall data and radar rainfall data, the model was calibrated using observed discharge data at 5 stations with $R^2$, Nash and Sutcliffe Model Efficiency (ME) and Volume Conservation Index (VCI). The calibration results of $R^2$, ME and VCI were 0.85, 0.78 and 1.09 for ground rainfall and 0.85, 0.79, and 1.04 for radar rainfall respectively. The flood inundation record areas (SY and MD/SG district) by typhoon Sanba were compared with the distributed modeling results. The spatial distribution by radar rainfall produced more surface runoff from the watershed and simulated higher stream discharge than the ground rainfall condition in both SY and MD/SG district. In case of MD/SG district, the stream water level by radar rainfall near the flood inundation area showed 0.72 m higher than the water level by ground rainfall.

Design and Implementation of Flying-object Tracking Management System by using Radar Data (레이더 자료를 이용한 항적추적관리시스템 설계 및 구현)

  • Lee Moo-Eun;Ryu Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.13D no.2 s.105
    • /
    • pp.175-182
    • /
    • 2006
  • Radars are used to detect the motion of the low flying enemy planes in the military. Radar-detected raw data are first processed and then inserted into the ground tactical C4I system. Next, these data we analyzed and broadcasted to the Shooter system in real time. But the accuracy of information and time spent on the displaying and graphical computation are dependent on the operator's capability. In this paper, we propose the Flying Object Tracking Management System that allows the displaying of the objects' trails in real time by using data received from the radars. We apply the coordinate system translation algorithm, existing communication protocol improvements with communication equipment, and signal and information computation process. Especially, radar signal duplication computation and synchronization algorithm is developed to display the objects' coordinates and thus we can improve the Tactical Air control system's reliability, efficiency, and easy-of-usage.

Development of 2-Dimension Radar Distance Measurement System with 24 GHz Antenna Module and Its Performance Evaluation (24 GHz 안테나 모듈을 이용한 2차원 레이더 거리 측정 시스템 개발 및 성능 평가)

  • Go, Seok-Jo;Kim, Tae-Hoon;Cha, Byung-Soo;Park, Min-Kyu;Moon, Young-Gun;Yu, Ki-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.62-68
    • /
    • 2016
  • Laser distance measuring systems are used in many fields with high precision. However, when measuring the reflector such as the mirror and the black color, a laser distance measuring system does not guarantee the measurement accuracy. In order to measure the shape of the cargo, this study proposes the radar distance measurement system. The radar distance measuring system is composed of a distance measuring unit with a 24 GHz antenna module, a signal processing and control board and the 1-axis tilting unit. And, this study developed a monitoring program to monitor the measured data. In order to evaluate performance of the developed system, the distance measurement tests are carried out. The distance error was about 6-15 cm. However, considering the size of the cargo, the precision is not a problem. And, cargo shape was measured by using the distance information measured by the 1-axis tilting unit. It could get a 2 dimension shape profile for the cargo stacked in a yard.

Adjustment of the Mean Field Rainfall Bias by Clustering Technique (레이더 자료의 군집화를 통한 Mean Field Rainfall Bias의 보정)

  • Kim, Young-Il;Kim, Tae-Soon;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.8
    • /
    • pp.659-671
    • /
    • 2009
  • Fuzzy c-means clustering technique is applied to improve the accuracy of G/R ratio used for rainfall estimation by radar reflectivity. G/R ratio is computed by the ground rainfall records at AWS(Automatic Weather System) sites to the radar estimated rainfall from the reflectivity of Kwangduck Mt. radar station with 100km effective range. G/R ratio is calculated by two methods: the first one uses a single G/R ratio for the entire effective range and the other two different G/R ratio for two regions that is formed by clustering analysis, and absolute relative error and root mean squared error are employed for evaluating the accuracy of radar rainfall estimation from two G/R ratios. As a result, the radar rainfall estimated by two different G/R ratio from clustering analysis is more accurate than that by a single G/R ratio for the entire range.

Imaging Method for Array Structured Bistatic Ground-to-Air Radar (배열 구조 바이스태틱 지대공 레이다의 이미징 기법)

  • Choi, Sang-Hyun;Yang, Dong-Hyeuk;Song, Ji-Min;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.599-607
    • /
    • 2018
  • This paper presents a ground-to-air bistatic radar system and its implementation algorithm, which resembles an SAR(synthetic aperture radar) reconstruction algorithm. Via cooperative working between a standoff transmitting radar and an array of ground based receiving radars, it detects and images moving targets under clutter in the air. In the proposed system, the whole receiving antenna aperture is synthesized by physical ground based radars, and thus, unlike conventional SAR, it does not require long illumination time of the target area. The reconstruction algorithm uses planewave approximation based polar format processing, which alleviates the requirement of positioning the receiving radars, which can cause grating lobes if not chosen properly. We derive a reconstruction algorithm including clutter suppression and discuss implementation issues, such as the resolution of a reconstructed image and the method of compensation for the irregularity of the receiving radars' positions. A simulation that validates the proposed algorithm is also shown.