• Title/Summary/Keyword: Radar images

Search Result 449, Processing Time 0.031 seconds

Classification for landfast sea ice types in Greenland with texture analysis images (텍스쳐 이미지를 이용한 그린란드 정착빙의 분류)

  • Hwang, Do-Hyun;Hwang, Byong-Jun;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.4
    • /
    • pp.589-593
    • /
    • 2013
  • Remote sensing of SAR images is suitable for sea ice observations to obtain the sea ice data if clouds or weather conditions change. There are various types of sea ice, classification results can be seen more easily to detect the change by types of sea ice. In this study, we classified the image by supervised classification method, which is minimum distance was used. Also, we compared the overall accuracy when compared to the results with classification result of SAR images and the result of texture images. When using Radarsat-2 texture images, the overall accuracy was the highest, generally, when using the SAR images had higher overall accuracy.

A Visualization Method of High Definition Weather Radar Information for various GIS Platforms (다양한 GIS 플랫폼을 위한 고해상도 기상레이더 정보 시각화 기법)

  • Jang, Bong-Joo;Lim, Sanghun;Lee, Suk-Hwan;Moon, Kwang-Seok;Chandrasekar, V.;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.11
    • /
    • pp.1239-1249
    • /
    • 2013
  • According to development of weather radar, researches about observation, analysis or forecast of weather phenomena such as tornado, flash-flood etc. were encouraged by reducing frequency interferences, transmission noises, attenuations of radar signal. In contrast, there is a growing interest in the visualization and expression methods for weather radar data but weather radar manufacturers or the organs of government for weather are just busy interpreting expressed weather images projected on GIS. We propose an effective high definition weather radar information visualization method able to apply various GIS platforms to observe and take actions against rapid local weather changes effectively. In this paper, first we change information acquired from weather radar to raster or vector type high definition data structures using specific algorithms. And then, we quadrate our processed raster/vector type weather data with various GIS platforms accurately to make observers can recognize and check weather situations over exact geographical positions and elevations intuitively. Experimental results verify that our method make observers can recognize and analyze weather changes, tornados, local downpours or flash floods accurately by analyzing high definition weather radar data combined with GIS platform including detailed target locations and elevations.

High-Precision and 3D GIS Matching and Projection Based User-Friendly Radar Display Technique (3차원 GIS 정합 및 투영에 기반한 사용자 친화적 레이더 자료 표출 기법)

  • Jang, Bong-Joo;Lee, Keon-Haeng;Lee, Dong-Ryul;Lim, Sanghun
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1145-1154
    • /
    • 2014
  • In recent years, as frequency and intensity of severe weather disasters such as flash flood have been increasing, providing accurate and prompt information to the public is very important and needs of user-friendly monitoring/warning system are growing. This paper introduces a method that re-produces radar observations as multimedia contents and applies reproduced data to mesh-up services. In addition, a accurate GIS matching technique to help to track the exact location going on serious atmospheric phenomena is presented. The proposed method create multimedia contents having structures such as two dimensional images, vector graphics or three dimensional volume data by re-producing various radar variables obtained from a weather radar. After then, the multimedia formatted weather radar data are matched with various detailed raster or vector GIS map platform. Results of simulation test with various scenarios indicate that the display system based on the proposed method can support for users to figure out easily and intuitively routes and degrees of risk of severe weather. We expect that this technique can also help for emergency manager to interpret radar observations properly and to forecast meteorological disasters more effectively.

Development of Acquisition and Analysis System of Radar Information for Small Inshore and Coastal Fishing Vessels - Position Tracking and Real-Time Monitoring- (연근해 소형 어선의 레이더 정보 수록 및 해석 시스템 개발 -위치 추적 및 실시간 모니터링 -)

  • 이대재;김광식;신형일;변덕수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.337-346
    • /
    • 2003
  • This paper describes on the system and method for automatically tracking and real-time monitoring the position of target ships relative to the own ship using a PC based radar system that displays radar images and electronic charts together on a single PC screen. This system includes a simulator for generating the GGA and VTG information of target ships and a simulator for generating the TTM and OSD outputs from a ARPA radar and then host computer accepts NMEA0183 sentences on the maneuvering information of target ships from these simulators. The results obtained are summarized as follows;1. The system developed this study can be used as a range finder for measuring the distance between two ships and as a device for providing the maneuvering information such as distance and bearing to target ships from own ship on ECS screen. 2. From the result of position tracking for a selected target ship tracked with an update rate of 5 seconds using the $\alpha$-$\beta$ tracker, we concluded that the smoothing effect by the $\alpha$-$\beta$tracker was very effective and stable except in the time interval until about one minute after the target is detected. 3. From the fact that the real-time maneuvering information of tracked ship targets via a local area network (LAN) from a host computer installed a radar target extractor was successfully transferred to various monitoring computers of ship, we concluded that this system can be used as a sub-monitoring system of ARPA radar.

Principles and application of DC resistivity tomography and borehole radar survey. (전기비저항 토모그래피와 시추공 레이다 탐사의 원리 및 응용)

  • Kim Jung-Ho;Yi Myeong-Jong;Cho Seong-Jun;Song Yoon-Ho;Chung Seung-Hwan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.92-116
    • /
    • 1999
  • Tomographic approaches to image underground structure using electrical properties, can be divided into DC resistivity, electromagnetic, and radar tomography, based on the operating frequency. DC resistivity and radar tomography methods have been recently applied to site investigation for engineering purpose in Korea. This paper review these two tomography methods, through the case histories acquired in Korea. As another method of borehole radar survey, borehole radar reflection method is included, and its inherent problem and solution are discussed, how to find the azimuth angle of reflector using direction-finding-antenna. Since the velocity anisotropy of radar wave has been commonly encountered in field data, anisotropic radar tomography is discussed in this paper. In DC resistivity tomography, two subjects are focussed, electrode arrays, and borehole effect owing to the conductive fluid in borehole. Using the numerical modeling data, various kinds of electrode ways are compared, and borehole effect is illustrated. Most of the case histories presented in this paper are compared with known geology, core logging data, and/or Televiewer images.

  • PDF

Estimation of Significant Wave Heights from X-Band Radar Using Artificial Neural Network (인공신경망을 이용한 X-Band 레이다 유의파고 추정)

  • Park, Jaeseong;Ahn, Kyungmo;Oh, Chanyeong;Chang, Yeon S.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.561-568
    • /
    • 2020
  • Wave measurements using X-band radar have many advantages compared to other wave gauges including wave-rider buoy, P-u-v gauge and Acoustic Doppler Current Profiler (ADCP), etc.. For example, radar system has no risk of loss/damage in bad weather conditions, low maintenance cost, and provides spatial distribution of waves from deep to shallow water. This paper presents new methods for estimating significant wave heights of X-band marine radar images using Artificial Neural Network (ANN). We compared the time series of estimated significant wave heights (Hs) using various estimation methods, such as signal-to-noise ratio (${\sqrt{SNR}}$), both and ${\sqrt{SNR}}$ the peak period (TP), and ANN with 3 parameters (${\sqrt{SNR}}$, TP, and Rval > k). The estimated significant wave heights of the X-band images were compared with wave measurement using ADCP(AWC: Acoustic Wave and Current Profiler) at Hujeong Beach, Uljin, Korea. Estimation of Hs using ANN with 3 parameters (${\sqrt{SNR}}$, TP, and Rval > k) yields best result.

THE DEVELOPMENT OF CIRCULARLY POLARIZED SYNTHETIC APERTURE RADAR SENSOR MOUNTED ON UNMANNED AERIAL VEHICLE

  • Baharuddin, Merna;Akbar, Prilando Rizki;Sumantyo, Josaphat Tetuko Sri;Kuze, Hiroaki
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.441-444
    • /
    • 2008
  • This paper describes the development of a circularly polarized microstrip antenna, as a part of the Circularly Polarized Synthetic Aperture Radar (CP-SAR) sensor which is currently under developed at the Microwave Remote Sensing Laboratory (MRSL) in Chiba University. CP-SAR is a new type of sensor developed for the purpose of remote sensing. With this sensor, lower-noise data/image will be obtained due to the absence of depolarization problems from propagation encounter in linearly polarized synthetic aperture radar. As well the data/images obtained will be investigated as the Axial Ratio Image (ARI), which is a new data that hopefully will reveal unique various backscattering characteristics. The sensor will be mounted on an Unmanned Aerial Vehicle (UAV) which will be aimed for fundamental research and applications. The microstrip antenna works in the frequency of 1.27 GHz (L-Band). The microstrip antenna utilized the proximity-coupled method of feeding. Initially, the optimization process of the single patch antenna design involving modifying the microstrip line feed to yield a high gain (above 5 dBi) and low return loss (below -10 dB). A minimum of 10 MHz bandwidth is targeted at below 3 dB of Axial Ratio for the circularly polarized antenna. A planar array from the single patch is formed next. Consideration for the array design is the beam radiation pattern in the azimuth and elevation plane which is specified based on the electrical and mechanical constraints of the UAV CP-SAR system. This research will contribute in the field of radar for remote sensing technology. The potential application is for landcover, disaster monitoring, snow cover, and oceanography mapping.

  • PDF

Borehole radar survey to explore limestone cavities for the construction of a highway bridge

  • Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.80-87
    • /
    • 2004
  • During excavation work for the construction of a highway bridge in a limestone area in Korea, several cavities were found, and construction work was stopped temporarily. Cavities under the bridge piers might seriously threaten the safety of the planned bridge, because they could lead to excessive subsidence and differential settlement of the pier foundations. In order to establish a method for reinforcement of the pier foundations, borehole radar reflection and tomography surveys were carried out, to locate cavities under the planned pier locations and to determine their sizes where they exist. Since travel time data from the crosshole radar survey showed anisotropy, we applied an anisotropic tomography inversion algorithm assuming heterogeneous elliptic anisotropy, in order to reconstruct three kinds of tomograms: tomograms of maximum and minimum velocities, and of the direction of the symmetry axis. The distribution of maximum velocity matched core logging results better than that of the minimum velocity. The degree of anisotropy, defined by the normalized difference between maximum and minimum velocities, was helpful in deciding whether an anomalous zone in a tomogram was a cavity or not. By careful examination of borehole radar reflection and tomography images, the spatial distributions of cavities were delineated, and most of them were interpreted as being filled with clay and/or water. All the interpretation results implied that two faults imaged clearly by a DC resistivity survey were among the most important factors controlling the groundwater movement in the survey area, and therefore were closely related to the development of cavities. The method of reinforcement of the pier foundations was based on the interpretation results, and the results were confirmed when construction work was resumed.

A Comparative Study of Wave Height Estimation base on X-band Radar (X-band 레이더 기반 파고 추정 방법 비교 연구)

  • Yang, Young-Jun;Park, Jun-Soo;Park, Seung-Geun;Kwon, Sun-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.571-576
    • /
    • 2015
  • This paper presents a comparative study of wave height estimation method that was used for signal to noise ratio and shadowing ratio based on X-band marine radar. If the signal to noise ratio, and is widely used as a method for estimating an wave height, a new method is presented for shadowing ratio. In the case of radar images used in this study it is measuring the data from the coast of Ulsan Jujeon, compared with marine meteorological information from the Meteorological Agency measured a light beacon. We compared the measured data for about 34 days, the typhoon was measured, incluidng a period in the East Sea, and verify the results for various distribution of wave height. For estimate wave height using a shadowing ratio analysis, it does not require calibration and real-time advantages of this part, coming confirmed the possibility of the measurement, the cause detection error for radar image was caused due to determine.

Implementation of Radar Drone Detection Based on ISAR Technique (ISAR 영상 기반 소형 드론 탐지 구현)

  • Lee, Kee-Woong;Song, Kyoung-Min;Song, Jung-Hwan;Jung, Chul-Ho;Lee, Woo-kyung;Lee, Myeong-Jin;Song, Yong-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.2
    • /
    • pp.159-162
    • /
    • 2017
  • Along with the popular use of commercial drones, there are increased concerns on the possible threats from drones intruding into secured areas. The difficulty of drone detection is attributed to its stealthy operation flying at low altitude with low level signature. Consequently, the anti-drone technique has been of major research topic in recent years and among others, the radar detection is considered as the most promising technique. However, the use of conventional radar detection may not be effective due to the low level radar cross sections of the commercial drones. In this paper, ISAR technique has been employed to implement drone detection in urban area. To this purpose, a pulsed radar system is set up on the ground to track flying drones and the corresponding ISAR images are produced by coherent processing.