• Title/Summary/Keyword: Radar data analysis

Search Result 468, Processing Time 0.03 seconds

Analysis of Quality Control Technique Characteristics on Single Polarization Radar Data (단일편파 레이더자료 품질관리기술 특성 분석)

  • Park, Sora;Kim, Heon-Ae;Cha, Joo Wan;Park, Jong-Seo;Han, Hye-Young
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.77-87
    • /
    • 2014
  • The radar reflectivity is significantly affected by ground clutter, beam blockage, anomalous propagation (AP), birds, insects, chaff, etc. The quality of radar reflectivity is very important in quantitative precipitation estimation. Therefore, Weather Radar Center (WRC) of Korea Meteorological Administration (KMA) employed two quality control algorithms: 1) Open Radar Product Generator (ORPG) and 2) fuzzy quality control algorithm to improve quality of radar reflectivity. In this study, an occurrence of AP echoes and the performance of both quality control algorithms are investigated. Consequently, AP echoes frequently occur during the spring and fall seasons. Moreover, while the ORPG QC algorithm has the merit of removing non-precipitation echoes, such as AP echoes, it also removes weak rain echoes and snow echoes. In contrast, the fuzzy QC algorithm has the advantage of preserving snow echoes and weak rain echoes, but it eliminates the partial area of the contaminated echo, including the AP echoes.

The Development of the Data Acquisition & Analysis System for Multi-Function Radar (다기능레이더 데이터 획득 및 분석 장치 개발)

  • Song, Jun-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.106-113
    • /
    • 2011
  • This paper describes Data Acquisition & Analysis System(DAS) for analysis of the multi-function radar. There are various information - beam probing data, clutter map data, plot data, target tracking data, RT tracking data, radar signal processing data, interface data - this device saves. The most important thing of data analysis is that a researcher gets a view of the whole data. The DAS intergrates with all of the data and provides overall information on the time matters occur. This is very useful advantage for approaching the matter easily. System algorithms of multi-function radar are improved by using this advantage. As a result of, range blank region have fallen about 72% and it is able to keep track in jammer environment.

Development of a Multiple Linear Regression Model to Analyze Traffic Volume Error Factors in Radar Detectors

  • Kim, Do Hoon;Kim, Eung Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.253-263
    • /
    • 2021
  • Traffic data collected using advanced equipment are highly valuable for traffic planning and efficient road operation. However, there is a problem regarding the reliability of the analysis results due to equipment defects, errors in the data aggregation process, and missing data. Unlike other detectors installed for each vehicle lane, radar detectors can yield different error types because they detect all traffic volume in multilane two-way roads via a single installation external to the roadway. For the traffic data of a radar detector to be representative of reliable data, the error factors of the radar detector must be analyzed. This study presents a field survey of variables that may cause errors in traffic volume collection by targeting the points where radar detectors are installed. Video traffic data are used to determine the errors in traffic measured by a radar detector. This study establishes three types of radar detector traffic errors, i.e., artificial, mechanical, and complex errors. Among these types, it is difficult to determine the cause of the errors due to several complex factors. To solve this problem, this study developed a radar detector traffic volume error analysis model using a multiple linear regression model. The results indicate that the characteristics of the detector, road facilities, geometry, and other traffic environment factors affect errors in traffic volume detection.

Study on the Application of 2D Video Disdrometer to Develope the Polarimetric Radar Data Simulator (이중편파레이더 시뮬레이터 개발을 위한 2차원 영상우적계 관측자료의 활용가능성 연구)

  • Kim, Hae-Lim;Park, Hye-Sook;Park, Hyang Suk;Park, Jong-Seo
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.173-188
    • /
    • 2014
  • The KMA has cooperated with the Oklahoma University in USA to develop a Polarimetric Radar Data (PRD) simulator to improve the microphysical processes in Korea Local Analysis and Prediction System (KLAPS), which is critical for the utilization of PRD into Numerical Weather Prediction (NWP) field. The simulator is like a tool to convert NWP data into PRD, so it enables us to compare NWP data with PRD directly. The simulator can simulate polarimetric radar variables such as reflectivity (Z), differential reflectivity ($Z_{DR}$), specific differential phase ($K_{DP}$), and cross-correlation coefficient (${\rho}_{hv}$) with input of the Drop Size Distribution (DSD) and scattering calculation of the hydrometeors. However, the simulator is being developed based on the foreign observation data, therefore the PRD simulator development reflecting rainfall characteristics of Korea is needed. This study analyzed a potential application of the 2-Dimension Video Disdrometer (2DVD) data by calculating the raindrop axis ratio according to the rain-types to reflect Korea's rainfall characteristics into scattering module in the simulator. The 2DVD instrument measures the precipitation DSD including the fall velocity and the shape of individual raindrops. We calculated raindrop axis ratio for stratiform, convective and mixed rainfall cases after checking the accuracy of 2DVD data, which usually represent the scattering characteristics of precipitation. The raindrop axis ratio obtained from 2DVD data are compared with those from foreign database in the simulator. The calculated the dual-polarimetric radar variables from the simulator using the obtained raindrop axis ratio are also compared with in situ dual-polarimetric observation data at Bislsan (BSL). 2DVD observation data show high accuracies in the range of 0.7~4.8% compared with in situ rain gauge data which represents 2DVD data are sufficient for the use to simulator. There are small differences of axis ratio in the diameter below 1~2 mm and above 4~5 mm, which are more obvious for bigger raindrops especially for a strong convective rainfall case. These differences of raindrop axis ratio between domestic and foreign rainfall data base suggest that the potential use of disdrometer observation can develop of a PRD simulated suitable to the Korea precipitation system.

Implementation of AESA Radar Integration Analysis System by using Heterogeneous Media

  • Min-Jung Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.117-125
    • /
    • 2024
  • In this paper, implement and propose an Active Electronically Scanned Array (AESA) radar integration analysis system which specialized for radar development by using heterogeneous media. Most analysis systems are used to analyze and improve the cause of defects, so they help the test easier. However, previous log analysis systems that operate only based on text are not intuitive and difficult to find the information user want at once if there is a lot of log information. so when an equipment defect occurs, there are limitations in analyzing the cause of defect. Therefore, the analysis system in this paper utilizes heterogeneous media. The media defined in this paper refers to recording text-based data, displaying data as image or video and visualizing data. The proposed analysis system classifies and stores data that transmitted and received between radar devices, radar target detection and Tracking algorithm data, etc. also displays and visualizes radar operation results and equipment defect information in real time. With this analysis system, it can quickly provide information what user want and assistance in developing high quality radar.

A Radar Performance Model for Mission Analyses of Missile Models (유도무기 임무 분석을 위한 레이더 성능 모델)

  • Kim, Jingyu;Woo, S.H. Arman
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.822-834
    • /
    • 2017
  • In M&S, radar model is a software module to identify position data of simulation objects. In this paper, we propose a radar performance model for simulations of air defenses. The previous radar simulations are complicated and difficult to model and implement since radar systems in real world themselves require a lot of considerations and computation time. Moreover, the previous radar simulations completely depended on radar equations in academic fields; therefore, there are differences between data from radar equations and data from real world in mission level analyses. In order to solve these problems, we firstly define functionality of radar systems for air defense. Then, we design and implement the radar performance model that is a simple model and deals with being independent from the radar equations in engineering levels of M&S. With our radar performance model, we focus on analyses of missions in our missile model and being operated in measured data in real world in order to make sure of reliability of our mission analysis as much as it is possible. In this paper, we have conducted case studies, and we identified the practicality of our radar performance model.

Implementation of a Display and Analysis Program to improve the Utilization of Radar Rainfall (레이더강우 자료 활용 증진을 위한 표출 및 분석 프로그램 구현)

  • Noh, Hui-Seong
    • Journal of Digital Contents Society
    • /
    • v.19 no.7
    • /
    • pp.1333-1339
    • /
    • 2018
  • Recently, as disasters caused by weather such as heavy rains have increased, interests in forecasting weather and disasters using radars have been increasing, and related studies have also been actively performed. As the Ministry of Environment(ME) has established and operated a radar network on a national scale, utilization of radars has been emphasized. However, persons in charge and researchers, who want to use the data from radars need to understand characteristics of the radar data and are also experiencing a lot of trials and errors when converting and calibrating the radar data from Universal Format(UF) files. Hence, this study developed a Radar Display and Analysis Program(RaDAP) based on Graphic User Interface(GUI) using the Java Programming Language in order for UF-type radar data to be generated in an ASCII-formatted image file and text file. The developed program can derive desired radar rainfall data and minimize the time required to perform its analysis. Therefore, it is expected that this program will contribute to enhancing the utilization of radar data in various fields.

WAVENUMBER CORRELATION ANALYSIS OF RADAR INTERFEROGRAM

  • Won, Joong-Sun;Kim, Jeong-Woo
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.425-428
    • /
    • 1999
  • The radar interferogram represents phase differences between the two synthetic aperture radar observations acquired in slightly different angle. The success of the radar interferometric application largely depends on the quality of the interferogram generated from two or more synthetic aperture radar data sets. We propose here to apply the wavenumber correlation analysis to the in-phase and quadrature phase of the radar interferogram. The wavenumber correlation analysis is to resolve the highly correlated components from the low correlation components by estimating correlation coefficients for each wavenumber component. Through this approach, one can easily distinguish the signal components from the noise components in the wavenumber domain. Therefore, the wavenumber correlation analysis of the radar interferogram can be utilized to design post filter and to estimate the quality of interferogram. We have tested the wavenumber correlation analysis using a Radarsat SAR data pair to demonstrated the effectiveness of

  • PDF

GIS Based Realistic Weather Radar Data Visualization Technique

  • Jang, Bong-Joo;Lim, Sanghun
    • Journal of Multimedia Information System
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • In recent years, the quixotic nature and concentration of rainfall due to global climate change has intensified. To monitor localized heavy rainfalls, a reliable disaster monitoring and warning system with advanced remote observation technology and high-precision display is important. In this paper, we propose a GIS-based intuitive and realistic 3D radar data display technique for accurate and detailed weather analysis. The proposed technique performs 3D object modeling of various radar variables along with ray profiles and then displays stereoscopic radar data on detailed geographical locations. Simulation outcomes show that 3D object modeling of weather radar data can be processed in real time and that changes at each moment of rainfall events can be observed three-dimensionally on GIS.

Wave and surface current measurement with HF radar in the central east coast of Korea (동해중부에서 HF Radar를 이용한 파랑 및 해수유동 관측)

  • Kim, Moo-Hong;Kim, Gyung-Soo;Kim, Hyeon-Seong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.771-780
    • /
    • 2014
  • We installed HF Radar of Array type in Site A and Site B, observing the real-time wave and current in the central East coast of Korea. WERA(WavE RAdar) in this research uses HF Radar of Array Type with frequency range of 24.525 MHz, developed by Helzel, Germany. Each site is a 8-Channel system consisting of four transmitters and eight receivers, generating wave and current data, being observed every thirty minutes at the present time. HF Radar has grid resolution of an interval of 1.5 km using bandwidth of 150 kHz; The wave data covers an observation range of about 25 km, and the current data covers the maximum observation range of about 50 km. The Wave data observed by HF Radar was compared and verified with the AWAC data observed in the research sites. MIT also compared the Current data observed by HF Radar with Monthly the East sea average surface current and current flow pattern provided by KOHA(Korea Hydrographic and oceanographic Administration). The regression line and deviation of the comparison data of Wave was calculated by Principal Component Analysis, which showed correlation coefficient 0.86 and RMSD 0.186. Besides, data analysis of long-term changes of the current in the East coast showed that, during August and September, the North Korean Cold Current flow into the southward direction and the East Korean Warm Current flow into the northward direction in the coast.