• Title/Summary/Keyword: Radar System Design

Search Result 357, Processing Time 0.025 seconds

Designing Passive-Type Radar Reflector for Small Ship

  • Yim, Jeong-Bin;Kim, Woo-Suk;Ahn, Yoeng-Sub;Park, Sung-Hyeon;Jung, Jung-Sik;Lee, Kyu-Dong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.05a
    • /
    • pp.125-134
    • /
    • 2003
  • This paper describes on the design of Passive-type Radar Reflector for small Ship (PRR-S) based on the newly revised 2000 SOLAS regulations. The design idea, adopted in the study, is to hold PRR-S in the proper ‘catch rain’ position to avoid fluctuations of Radar Cross Section (RCS) due to ship's heeling. The PRR-S consists of octahedral-type radar reflector with circular plates and three-axis gimbaled stabilizer with weight on the bottom of outer gimbal ring. Performance test for the PRR is carried out in an anechoic chamber. The test results show that the reflected radar signal from PRR-S is more uniformly distributed than the reference model (Davis Echomaster).

  • PDF

Design and Noise Figure Analysis of Coherent Transceiver for Airborne Radar (비행탑재용 레이다의 코히어런트 송수신단 설계 및 잡음지수 해석)

  • Woo, Duk-Jae;Kim, Sang-Joong;Lee, Taek-Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.38-47
    • /
    • 2004
  • To achieve functions of doppler measurement, MTI(Moving Target Indicator), high-resolution, and others in radar system, all circuits of transmitter and receiver are to be performed in coherent system. In this paper, we use TWTA(Traveling Wave Tube Amplifier), STALO(Stable Local Oscillator) and COHO(Coherent Oscillator) to design of coherent radar transceiver, and calculates noise figure of designed receiver. Using radar equation calculated noise figure, maximum detecting range of each transmitting mode can be calculated.

  • PDF

Design and Implementation of FMCW Radar Based on two-chip for Autonomous Driving Sensor (자율주행센서로서 개발한 2-chip 기반의 FMCW MIMO 레이다 설계 및 구현)

  • Choi, Junhyeok;Park, Shinmyong;Lee, Changhyun;Baek, Seungyeol;Lee, Milim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.43-49
    • /
    • 2022
  • FMCW(Frequency Modulated Continuous Wave) Radar is very useful for vehicle collision warning system and autonomous driving sensor. In this paper, the design and implementation of FMCW radar based on two chip MMIC developed as an autonomous driving sensor was described. Especially, generation of frame-based and chirp-based waveform generation and signal processing are mixed to have the strength of maximum detection speed and compensation of speed. This implemented system was analyzed for performance and commercialization potential through lab. test and driving test in K-city.

Design and Performance Analysis of Zoom-FFT Based FMCW Radar Level Meter (Zoom-FFT 기반 FMCW 레이더 레벨미터의 설계 및 성능분석)

  • Sanjeewa, Nuwan;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.38-44
    • /
    • 2014
  • This paper presents design of a FMCW (Frequency Modulated Continuous Wave) level meter as well as simulation result of the designed system. The system is designed to measure maximum range of 20m since FMCW radar can be used for measuring short range distance. The distance is measured by analyzing the beat signal which is generated as result of mixing transmitting signal with the reflected received signal. The Fast Fourier Transform is applied to analyze the beat signal for calculating the displacement and Zoom FFT technique is used to minimize measurement error as well as increase the resolution of the measurement. The resolution of the measurement of the designed system in this paper is 2.2mm and bandwidth of 1.024GHz is used for simulation. Thus the simulation results are analyzed and compared in various conditions in order to get a comprehensive idea of frequency resolution and displacement resolution.

Radar Sensor System Concept for Collision Avoidance of Smart UAV (무인기 충돌방지를 위한 레이다 센서 시스템 설계)

  • Kwag, Young-Kil;Kang, Jung-Wan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.203-207
    • /
    • 2003
  • Due to the inherent nature of the low flying UAV, obstacle detection is a fundamental requirement in the flight path to avoid the collision from obstacles as well as manned aircraft. In this paper, a preliminary sensor requirements of an obstacle detection system for UAV in low-altitude flight are analyzed, and the automated obstacle detection sensor system is proposed assessing both passive and active sensors such as EO camera, IR, Laser radar, microwave and millimeter radar. In addition, TCAS (Traffic Alert and Collision Avoidance System) are reviewed for the collision avoidance of the manned aircraft system. It is suggested that small-sized radar sensor is the best candidate for the smart UAV because an active radar can provide the real-time informations on range and range rate in the all-weather environment. However, an important constraints on small UAV should be resolved in terms of accommodation of the mass, volume, and power allocated in the payload of the UAV system design requirements.

  • PDF

Study on the Design and Fabrication of e-Racon Antenna (e-Racon 안테나의 설계 및 제작 관련 연구)

  • Kim, Jae-Kwan;Guk, Sung-Kee;Kim, Min-Cheol;Jo, Tae-Gyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.127-129
    • /
    • 2018
  • RadarBeacons are navigational equipment that helps the navigators avoid dangerous rocks, such as heavy fog, nighttime, etc. when ships operate, or when visibility is bad. The existing antenna was researching the development of the advanced radar eacon (Enhanced Radar Beacon) for improving the development of the next generation racon with the AIS (Automatic Identification System) function.

  • PDF

Development of Remote Radar/AIS Network System for Observing and Analyzing Vessel Traffic in Tokyo Bay

  • Hagiwara, Hideki;Shoji, Ruri;Tamaru, Hitoi;Liu, Shun;Okano, Tadashi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.151-156
    • /
    • 2006
  • Accurate vessel traffic observation is indispensable to carry out vessel traffic management, design of vessel traffic route, planning of port construction, etc. In order to observe the vessel traffic accurately without many efforts such as the use of a ship or car equipped with special radar observation system and the preparation of observation staff, the authors have been developing completely automated remote radar/AIS network system covering the main traffic area in Tokyo Bay. The composite radar image observed at Yokosuka and Kawasaki radar stations with AIS information can be seen on web site of Internet. In addition to the development of radar/AIS observation system, the software to analyze observed vessel traffic flow has been developed. This software has various functions such as automatic tracking of ship's positions, automatic estimation of ship's size, automatic integration of radar image and AIS data, animation of ships' movements, extraction of dangerous ship encounters, etc. The configuration and functions of the developed remote radar/AIS network system are shown first in this paper. Then various functions of the software to analyze vessel traffic are introduced, and some analyzed results on the vessel traffic in Tokyo Bay are described demonstrating the effectiveness of the developed system.

  • PDF

Design and Implementation of the Transmit and Receive Equipments for Wide Band Signals of a Spaceborne High Resolution Synthetic Aperture Radar (위성탑재 고해상도 합성개구 레이다용 광대역 신호 송 수신장치 설계 및 제작)

  • Ka, Min-Ho;Jeon, Byung-Tae;Kim, Se-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.3
    • /
    • pp.44-51
    • /
    • 2001
  • In general, the realization of spaceborne system is constrained by its space environment. In this paper, we suggest chirp stitching technique which generates and processes wideband radar signal with minimum hardware, design and implement transmit/receive equipments and operating programs to satisfy the requirement of this spaceborne high resolution SAR(Synthetic Aperture Radar). We apply the top down design approach to this system, and divide hardware into equipment, module and circuit levels, and software into SR(Software Requirement), AD(Architecture Design), DD(Detailed Design) and coding levels, and then extract each requirement to satisfy the wideband requirement of this spaceborne high resolution SAR. We, at first, test the hardware functions, confirm the wideband handling capability of this system with 85MHz wideband signals generated from two 42.5MHz narrow band signals, and show that this system can be used in spaceborne high resolution SARs.

  • PDF

An 2.4 GHz Bio-Radar System for Non-Contact Measurement of Heart and Respiration (호흡 및 심박수 측정을 위한 비 접촉 방식의 2.4 GHz 바이오 레이더 시스템)

  • Lee, Yong-Jin;Jang, Byung-Jun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.191-199
    • /
    • 2008
  • In this paper, we present a performance analysis and design and implementation results of a 2.4 GHz bio-radar system that can detect human heartbeat and respiration signals. In order to design a 2.4 GHz bio-radar system qualitatively, we investigate the electromagnetic properties of human tissues and calculate the target SNR of demodulation output with respect to distance. The target SNR is defined by the 90 % success ratio for detecting heartbeat signal. With this target SNR value, the performance and link budget of the bio-radar system is simulated using MATLAB. Using this link budget results, the direct conversion receiver is designed and Implemented in 4 layer printed circuit board(PCB). With output power of 0 dBm and 5 Hz bandwidth, 80 % success ratio of 50 cm is measured. Measurement results show a good agreement with simulation results.