• Title/Summary/Keyword: Radar Sounding

Search Result 15, Processing Time 0.019 seconds

Analysis of Martian topside ionospheric data obtained from Mars Advanced Radar for Subsurface and Ionospheric Sounding onboard Mars Express

  • Kim, Eojin;Seo, Haingja;Kim, Joo Hyeon;Lee, Joo Hee;Choi, Gihyuk;Sim, Eun-Sup
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.105.2-105.2
    • /
    • 2012
  • The upper ionosphere of Mars has been explored by many spacecraft like Mariners, Mars, Viking, and recently by MGS and MEX. MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding) aboard Mars Express Orbiter is operating from August 2005. MARSIS provides topside ionospheric traces, of which yield electron density profiles for altitudes above the primary ionospheric peak. A large amounts of data is useful for investigation of the Martian ionospheric environments under the changing conditions like solar activity, seasons, and solar zenith angle. We studied the characteristics of the Martian ionosphere through analysis of MARSIS data in the various conditions. We expect that our results contribute for understanding of the Martian ionospheric environment.

  • PDF

KSR-III 궤도데이터 취득시스템 개발

  • Lee, Sang-Rae;Lee, Soo-Jin;Kim, Jun-Kyu;Lee, Jae-Deuk
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.133-139
    • /
    • 2003
  • Position and trajectory data in-flight rocket are important informations to determine flight safety of rocket. In general tracking system, radar and transponder are used to acquire position information. Rocket position and trajectory can be determined by RF communication between ground station and in-flight rocket, and antenna position date. In this paper, it explains the ranging system which is low resolution rather than radar system but system configuration is simple. Therefore this system is useful for experimental flight vehicle.

  • PDF

Development of Snowfall Retrieval Algorithm by Combining Measurements from CloudSat, AQUA and NOAA Satellites for the Korean Peninsula

  • Kim, Young-Seup;Kim, Na-Ri;Park, Kyung-Won
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.277-288
    • /
    • 2011
  • Cloudsat satellite data is sensitive to snowfall and collected during each month beginning with Dec 2007 and ending Feb 2008. In this study, we attempt to develop a snowfall retrieval algorithm using a combination of radiometer and cloud radar data. We trained data from the relation between brightness temperature measurements from NOAA's Advanced Microwave Sounder Unit-B(AMSU-B) and the radar reflectivity of the 2B-GEOPROF product from W-band(94 GHz) cloud radar onboard Cloudsat and applied it to the Korea peninsula. We use a principal components analysis to quantify the variations that are the result of the radiometric signatures of snowfall from those of the surface. Finally, we quantify the correlation between the higher principal component (orthogonal to surface variability) of the microwave radiances and the precipitation-sensitive CloudSat radar reflectivities. This work summarizes the results of applying this approach to observations over the East Sea during Feb. 2008. The retrieved data show reasonable estimation for snowfall rate compared with Cloudsat vertical image.

The Analysis of the Topside Additional Layer of Martian Ionosphere Using MARSIS/Mars Express Data

  • Kim, Eojin;Seo, Haingja;Kim, Joo Hyeon;Lee, Joo Hee;Kim, Yong Ha;Choi, Gi-Hyuk;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.337-342
    • /
    • 2012
  • In this study, the transient second or third layer on the topside of the Martian ionosphere were investigated with the most recently released Mars advanced radar for subsurface and ionospheric sounding/Mars Express data obtained from January 2010 to September 2011 to study the correlation between these topside additional layers and surface magnetic fields, solar zenith angle and solar activities. When examining the zones where the topside layer appeared, the occurrence rate of the topside layer was low at the areas with a strong Martian crustal magnetic field as observed by the Mars global surveyor. The occurrence rate of additional layers on the Martian topside ionosphere decreases as the solar zenith angle increases. However, these layers appeared significantly near the terminator of which solar zenith angle is $90^{\circ}$. In comparison between F10.7 which is the index of solar activities and the occurrence rate of the topside layer by date, its occurrence rate was higher in 2011 than in 2010 with less solar activities. The result of this study will contribute to better understanding of the environments in the topside of the ionosphere through the correlation between the various conditions regarding the Martian ionosphere and the transient layer.

Observations of the Polar Ionosphere by the Vertical Incidence Pulsed Ionospheric Radar at Jang Bogo Station, Antarctica

  • Ham, Young-Bae;Jee, Geonhwa;Lee, Changsup;Kwon, Hyuk-Jin;Kim, Jeong-Han;Zabotin, Nikolay;Bullett, Terence
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.143-156
    • /
    • 2020
  • Korea Polar Research Institute (KOPRI) installed an ionospheric sounding radar system called Vertical Incidence Pulsed Ionospheric Radar (VIPIR) at Jang Bogo Station (JBS) in 2015 in order to routinely monitor the state of the ionosphere in the auroral oval and polar cap regions. Since 2017, after two-year test operation, it has been continuously operated to produce various ionospheric parameters. In this article, we will introduce the characteristics of the JBS-VIPIR observations and possible applications of the data for the study on the polar ionosphere. The JBS-VIPIR utilizes a log periodic transmit antenna that transmits 0.5-25 MHz radio waves, and a receiving array of 8 dipole antennas. It is operated in the Dynasonde B-mode pulse scheme and utilizes the 3-D inversion program, called NeXtYZ, for the data acquisition and processing, instead of the conventional 1-D inversion procedure as used in the most of digisonde observations. The JBS-VIPIR outputs include the height profiles of the electron density, ionospheric tilts, and ion drifts with a 2-minute temporal resolution in the bottomside ionosphere. With these observations, possible research applications will be briefly described in combination with other observations for the aurora, the neutral atmosphere and the magnetosphere simultaneously conducted at JBS.

An Analysis of Precipitation Systems Developed near Jeju Island in Korea during the Summer Monsoon, 2006

  • Jang, Sang-Min;Gu, Ji-Young;Lee, Dong-In;Jeong, Jong-Hoon;Park, Sung-Hwa;Uyeda, Hiroshi
    • Journal of the Korean earth science society
    • /
    • v.33 no.5
    • /
    • pp.377-394
    • /
    • 2012
  • To elucidate the mechanism associated with the development of heavy precipitation system, a field experiment was carried out in Jejudo (or Jeju Island) and Marado, Korea from 22 June to 12 July 2006. The synoptic atmospheric conditions were analyzed using the National Centers for Environmental Prediction-National Center for Atmospheric Research's (NCEP/NCAR) reanalyzed data, weather maps, and sounding data. The kinematic characteristics of each precipitation system were investigated by dual Doppler radar analysis. During the field experiment, data of four precipitation events with more than 20 mm rainfall were collected. In F case (frontal precipitation), a typical Changma front was dominant and the observation field was fully saturated. However there was no convective instability near the surface. LF case (low pressure accompanied with Changma front) showed strong convective instability near the surface, while a strong convergence corresponded to the low pressure from China accompanied with Changma front. In FT case (Changma front indirectly influenced by typhoon), the presence of a convective instability indicated the transport of near surface, strong additional moisture from the typhoon 'EWINIAR'. The convergence wind field was ground to be located at a low level. The convective instability was not significant in T case (precipitation of the typhoon 'EWINIAR'), since the typhoon passed through Jejudo and the Changma front was disappeared toward the northeastern region of the Korean peninsula. The kinematic (convergence and divergence) characteristics of wind fields, convective instability, and additional moisture inflow played important roles in the formation and development of heavy precipitation.

Precision Assessment of Near Real Time Precise Orbit Determination for Low Earth Orbiter

  • Choi, Jong-Yeoun;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.55-62
    • /
    • 2011
  • The precise orbit determination (POD) of low earth orbiter (LEO) has complied with its required positioning accuracy by the double-differencing of observations between International GNSS Service (IGS) and LEO to eliminate the common clock error of the global positioning system (GPS) satellites and receiver. Using this method, we also have achieved the 1 m positioning accuracy of Korea Multi-Purpose Satellite (KOMPSAT)-2. However double-differencing POD has huge load of processing the global network of lots of ground stations because LEO turns around the Earth with rapid velocity. And both the centimeter accuracy and the near real time (NRT) processing have been needed in the LEO POD applications--atmospheric sounding or urgent image processing--as well as the surveying. An alternative to differential GPS for high accuracy NRT POD is precise point positioning (PPP) to use measurements from one satellite receiver only, to replace the broadcast navigation message with precise post processed values from IGS, and to have phase measurements of dual frequency GPS receiver. PPP can obtain positioning accuracy comparable to that of differential positioning. KOMPSAT-5 has a precise dual frequency GPS flight receiver (integrated GPS and occultation receiver, IGOR) to satisfy the accuracy requirements of 20 cm positioning accuracy for highly precise synthetic aperture radar image processing and to collect GPS radio occultation measurements for atmospheric sounding. In this paper we obtained about 3-5 cm positioning accuracies using the real GPS data of the Gravity Recover and Climate Experiment (GRACE) satellites loaded the Blackjack receiver, a predecessor of IGOR. And it is important to reduce the latency of orbit determination processing in the NRT POD. This latency is determined as the volume of GPS measurements. Thus changing the sampling intervals, we show their latency to able to reduce without the precision degradation as the assessment of their precision.

Retrieval of Rain-Rate Using the Advanced Microwave Sounding Unit(AMSU)

  • Byon, Jae-Young;Ahn, Myoung-Hwan;Sohn, Eun-Ha;Nam, Jae-Cheol
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.361-365
    • /
    • 2002
  • Rain-rate retrieval using the NOAA/AMSU (Advanced Microwave Sounding Unit) (Zaho et al., 2001) has been implemented at METRI/KMA since 2001. Here, we present the results of the AMSU derived rain-rate and validation result, especially for the rainfall associated with the tropical cyclone for 2001. For the validation, we use rain-rate derived from the ground based radar and/or rainfall observation from the rain gauge in Korea. We estimate the bias score, threat score, bias, RMSE and correlation coefficient for total of 16 tropical cyclone cases. Bias score shows around 1.3 and it increases with the increasing threshold value of rain-rate, while the threat score extends from 0.4 to 0.6 with the increasing threshold value of precipitation. The averaged rain-rate for at all 16 cases is 3.96mm/hr and 1.41mm/hr for the retrieved from AMSU and the ground observation, respectively. On the other hand, AMSU rain-rate shows a much better agreement with the ground based observation over inner part of tropical cyclone than over the outer part (Correlation coefficient for convective region is about 0.7, while it is only about 0.3 over the stratiform region). The larger discrepancy of tile correlation coefficient with the different part of the tropical cyclone is partly due to the time difference in between ice water path and surface rainfall. This results indicates that it might be better to develop the algorithm for different rain classes such as convective and stratiform.

  • PDF

Sounding Observation with Wind Profiler and Radiometer of the Yeongdong Thundersnow on 20 January 2017 (2017년 1월 20일 영동 뇌설 사례에 대한 연직바람관측장비와 라디오미터 관측 자료의 분석)

  • Kwon, Ju-Hyeong;Kwon, Tae-Yong;Kim, Byung-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.465-480
    • /
    • 2018
  • On 20 January 2017, the fresh snow cover which is more than 20 cm, accompaning with lightning occurred over Yeongdong coastal region for the first 3-hour of the heavy snowfall event. This study analyzed sounding observations in the heavy snow period which were including the measurements of wind profiler, radiometer and rawinsonde. The features examined from the vertical wind and temperature data at the two adjacent stations, Bukgangneung and Gangneung-Wonju National University, are summarized as follows: 1) The strong (30-40 kts) north-east winds were observed in the level from 2 to 6 km. The Strong atmospheric instability was found from 4 to 6 km, in which the lapse rate of temperature was about $-18^{\circ}C\;km^{-1}$. These features indicate that the deep convective cloud develops up to the height of 6 km in the heavy snowfall period, which is shown in the satellite infrared images. 2) The cooling was observed in the level below 1 km. At this time, the surface air temperature at Bukgangneung station decreased by $4^{\circ}C$. The narrow cooling zone estimated from AWS and buoy data was located in east-west direction. These are the features observed in the cold front of extratropical cyclone. The distributions of radar echo and lightning also show the same shape in east-west direction. Therefore, the results indicate that the Yeongdong thundersnow event was the combined precipitation system of deep convective cloud and cold frontal precipitation.

Analysis of ionospheric payloads for Mars exploration (화성 전리층 관측 탑재체 성능 분석)

  • Kim, Eojin;Seo, Haingja;Kim, Joo Hyeon;Lee, Joo-Hee
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.94-104
    • /
    • 2013
  • In solar system, Mars which has the most similar environment with the Earth has been steadily studied for the purpose of habitable environment for the future manned exploration and settlement. During the daytime, Martian ionosphere can be used for the ground-ground communications between lander and rover through the reflection of the radio wave from ionosphere. In addition, researches about Martian ionosphere provide the link of revolution of water and atmosphere. Martian ionospheric observations were performed by the occultation experiments onboard Mariner, Mars, Viking series during early Martian explorations as well as recent Mars Global Surveyor. Low frequency radar and plasma analyzer are on board Mars Express and Viking-1, 2 lander obtained the only vertical plasma density profile during their entry phase. In this paper, we studied the characteristics of scientific payloads observing Martian ionosphere and then analyzed the usability of ionospheric research according to the communication and climate on Mars.