• Title/Summary/Keyword: Radar Signal Detection

Search Result 223, Processing Time 0.033 seconds

A Study on the Synthetic Aperture Radar Processor using AOD/CCD (AOD/CCD를 이용한 합성개구면 레이다 처리기에 관한 연구)

  • 박기환;이영훈;이영국;은재정;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.10
    • /
    • pp.1957-1964
    • /
    • 1994
  • In this thesis, a Synthetic Aperture Rarar Processor that is possible real-time handling is implemented using CW(Continuose Wave) laser as a light source, CCD(charge Coupled Device) as a time integrator, and AOD(Acousto-Optic Device) as the space integrator. One of the advantages of the proposed system is that it does not require driving circuits of the light source. To implement the system, the linear frequency modulation(chirp) technique has been used for radar signal. The received data for the unit target was processed using 7.80 board and accompanying electronic circuits. In order to reduce the smear effect of the focused chirp signal which occurs Bragg diffrection angle of the AOD has been utilized to make sharp pulses of the laser source, and the pulse made synchronized with the chirp signal. Experiment and analysis results of the data and images detected from CCD of the proposed SAR system demonstrated that detection effect is degrated as the unit target distance increases, and the resolving power is improved as the bandwidth of the chirp signal increases. Also, as the pulse width of the light source decreases, the smear effect has been reduced. The experimental results assured that the proposed system in this papre can be used as a real time SAR processor.

  • PDF

Smart Radar System for Life Pattern Recognition (생활패턴 인지가 가능한 스마트 레이더 시스템)

  • Sang-Joong Jung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.91-96
    • /
    • 2022
  • At the current camera-based technology level, sensor-based basic life pattern recognition technology has to suffer inconvenience to obtain accurate data, and commercial band products are difficult to collect accurate data, and cannot take into account the motive, cause, and psychological effect of behavior. the current situation. In this paper, radar technology for life pattern recognition is a technology that measures the distance, speed, and angle with an object by transmitting a waveform designed to detect nearby people or objects in daily life and processing the reflected received signal. It was designed to supplement issues such as privacy protection in the existing image-based service by applying it. For the implementation of the proposed system, based on TI IWR1642 chip, RF chipset control for 60GHz band millimeter wave FMCW transmission/reception, module development for distance/speed/angle detection, and technology including signal processing software were implemented. It is expected that analysis of individual life patterns will be possible by calculating self-management and behavior sequences by extracting personalized life patterns through quantitative analysis of life patterns as meta-analysis of living information in security and safe guards application.

Detection Scheme of Heart and Respiration Signals for a Driver of Car with a Doppler Radar (도플러 레이더 기반 차량 운전자의 심박 및 호흡 신호 검출 기법 연구)

  • Yun, Younguk;Lee, Jeongpyo;Kim, Jinmyung;Kim, Youngok
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.87-95
    • /
    • 2020
  • Purpose: In this paper, we propose an algorithm for detecting respiratory rate and heart beat of a driver of car by exploiting Doppler radar, and verifying the feasibility of the study through experiments. Method: In this paper, we propose a weighted peak detection technique using peak frequency values. The tests are performed in stop-state and driving-state, and the experiment result is analyzed by two proposed algorithms. Result: The results showed more than 95% and 96% accuracy of respiratory and heart rate, respectively. It also showed more than 72% and 84% accuracy of those even for driving experiments. Conclusion: The proposed detection scheme for vital signs can be used for the safety of the driver as well as for prevention of a large size of car accidents.

밀리미터파 레이다 시스템을 이용한 전력선 검출

  • Kang, Gum-Sil;Yong, Sang-Soon;Kang, Song-Doug;Kim, Jong-Ah;Chang, Young-Jun
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.242-250
    • /
    • 2004
  • This paper describes the detection method of wire-like obstacles using millimeter-wave radar system. Passive sensor like CCD camera can be used for the detection of high power electric cables on the hills or mountains and it can give very good quality of obstacle target information. But this system is very limited to use by bad weather condition. The detection capability for different diameters of wire targets using millimeter radar system have been accomplished. To simulate the target on the moving helicopter, rotating targets are used with fixed radar system. In the experiment 11mm, 16mm and 22mm diameter of wires have been detected in single, two and three wires in one position. The detected signal from single wire was very clear on gray level image. Three wires placed very closely together could be recognized in range, cross range image plane. For two and three wires, blur effect due to mutual scattering effect is observed.

  • PDF

Classification Type of Weapon Using Artificial Intelligence for Counter-battery RadarPaper Title (인공지능을 이용한 대포병탐지레이더의 탄종 식별)

  • Park, Sung-Jin;Jin, Hyung-Seuk
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.921-930
    • /
    • 2020
  • The Counter-battery radar estimates the origin and impact point of the artillery by tracking the trajectory of the shell. In addition, it has the ability of identifying the type of weapon. Depending on the position between the shell and the radar, the detected signals appear differently. This has ambiguity to distinguish the type of shells. This paper compares fuzzy logic and artificial intelligence, which classifies type of shell using the parameter of signal processing step. According to the research result, artificial intelligence can improve identification rate of type of shell. The data used in the experiment was obtained from a live fire detection test.

The Low Probability of Intercept RADAR Waveform Based on Random Phase and Code Rate Transition for Doppler Tolerance Improvement (도플러 특성 개선을 위한 랜덤 위상 및 부호율 천이 기반 저피탐 레이다 파형)

  • Lee, Ki-Woong;Lee, Woo-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.11
    • /
    • pp.999-1011
    • /
    • 2015
  • In modern electronic warfare, RADAR is under constant threat of ECM(Electronic Counter Measures) signals from nearby jammers. The conventional linear frequency modulated(Linear-FM) waveform is easy to be intercepted to estimate its signal parameters due to its periodical phase transition. Recently, APCN(Advanced Pulse Compression Noise) waveform using random amplitude and phase transition was proposed for LPI(Low probability of Intercept). But random phase code signals such as APCN waveform tend to be sensitive to Doppler frequency shift and result in performance degradation during moving target detection. In this paper, random phase and code rate transition based radar waveform(RPCR) is proposed for Doppler tolerance improvement. Time frequency analysis is carried out through ambiguity analysis to validate the improved Doppler tolerance of RPCR waveform. As a means to measure the vulnerability of the proposed RPCR waveform against LPI, WHT(Wigner-Hough Transform) is adopted to analyze and estimate signal parameters for ECCM(Electronic Counter Counter Measures) application.

Detection of Delamination inside Concrete Using Ground Penetrating Radar (GPR을 이용한 콘크리트 내 공동 탐사)

  • Rhim, Hong-Chul;Lee, Soong-Jae;Woo, Sang-Kyun;Song, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.177-184
    • /
    • 2003
  • A series of experimental work has been conducted to evaluate the capability of Ground Penetrating Radar (GPR) system in detecting delamination inside concrete. Three antenna at 900 MHz, 1000 MHz, and 1500 MHz frequency are used in the experiments for laboratory size specimens, and 400 MHz antenna has been used for a large size specimen. The laboratory size specimens have the dimensions of 1,000 mm (length) ${\times}$ 600 mm (width) ${\times}$ 140 mm (thickness) with a delamination of 200 mm (length) ${\times}$ 600 mm (width) ${\times}$ 140 mm (thickness). The cover depth of the delamination is varied as follows: 20 mm, 30 mm, 60 mm, and 70 mm. In all cases, the delamination has been successfully identified. The property of three frequencies was seized about detecting delamination. Also, it was shown that the image results in GPR were improved by signal processing.

Doppler Radar System for Long Range Detection of Respiration and Heart Rate (원거리에서 측정 가능한 호흡 및 심박 수 측정을 위한 도플러 레이더 시스템)

  • Lee, Jee-Hoon;Kim, Ki-Beom;Park, Seong-Ook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.418-425
    • /
    • 2014
  • This paper presents a Ku-Band Doppler Radar System to measure respiration and heart rate. It was measured by using simultaneous radar and ECG(Electrocardiogram). Arctangent demodulation without dc offset compensation can be applied to transmitted I/Q(In-phase & Quadrature-phase) signal in order to improve the RMSE(Root Mean Square Error) about 50 %. The power leaked to receiving antenna from the transmitting antenna is always generated because of continuously opening the transceiver of CW(Continuous Wave) Doppler radar. As the output power increase, leakage power has an effect on the SNR(Signal-to-Noise Ratio) of the system. Therefore, in this paper, leakage cancellation technique that adds the signal having the opposite phase of the leakage power to the leakage power was implemented in order to minimize the decline of receiver sensitivity. By applying the leakage cancellation techniques described above, it is possible to measure the heart rate and respiration of the human at a distance of up to 35 m. the heart rate of the measured data at a distance of 35 m accords with the heart rate extracted from the ECG data.

Adaptive CFAR implementation of UWB radar for collision avoidance in swarm drones of time-varying velocities (군집 비행 드론의 충돌 방지를 위한 UWB 레이다의 속도 감응형 CFAR 최적화 연구)

  • Lee, Sae-Mi;Moon, Min-Jeong;Chun, Hyung-Il;Lee, Woo-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.456-463
    • /
    • 2021
  • In this paper, Ultra Wide-Band(UWB) radar sensor is employed to detect flying drones and avoid collision in dense clutter environments. UWB signal is preferred when high resolution range measurement is required for moving targets. However, the time varying motion of flying drones may increase clutter noises in return signals and deteriorates the target detection performance, which lead to the performance degradation of anti-collision radars. We adopt a dynamic clutter suppression algorithm to estimate the time-varying distances to the moving drones with enhanced accuracy. A modified Constant False Alarm Rate(CFAR) is developed using an adaptive filter algorithm to suppress clutter while the false detection performance is well maintained. For this purpose, a velocity dependent CFAR algorithm is implemented to eliminate the clutter noise against dynamic target motions. Experiments are performed against flying drones having arbitrary trajectories to verify the performance improvement.

A Study on the Improvement of Naval Surveillance Radar to Solve the Target Display Problem (함정용 탐색레이더의 표적 전시상태 개선에 관한 연구)

  • Sim, Min-Seop;Lee, Ji-Hyeog;Jeong, Hyeon-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.541-546
    • /
    • 2020
  • The surveillance radar for naval ships is an essential equipment of a battle system that executes the detection and tracking of targets, and the shooting support function; it calculates the three-dimensional track of the target range, azimuth, and altitude to carry out its duty. The surveillance radar consists of an antenna, a transceiver, a processing unit, and an air dryer section. The radar radiates the transmission signal on the antenna section, receives the reflected signal from the target, and amplifies the signals on the transceiver section. The signal received from the antenna is used to provide the operator with target information in various ways. This study identified the display problems when the information about the target is displayed through the radar. The causes of the problems were analyzed and improved. The tracking disappearance phenomenon caused by the altered-course of the ship was improved on the TWS tracking algorithm. The validity of the improved TWS tracking algorithm was confirmed by the normal condition of the target status on the B-scope.