• Title/Summary/Keyword: Radar Sidelobe Canceller

Search Result 6, Processing Time 0.016 seconds

Sidelobe Cancellation Using Difference Channels for Monopulse Processing (모노펄스 처리용 차 채널을 이용한 부엽 잡음재머 제거)

  • Kim, Tae-Hyung;Choi, Dae-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.514-520
    • /
    • 2015
  • Sidelobe canceller(SLC) requires main beam pattern(SUM beam) and auxiliary beam patterns for rejection of sidelobe noise jammer. For best performance of sidelobe noise jamming cancellation of adaptive SLC, gain dominant region of each auxiliary beam pattern shall not be overlapped one another in elevation/azimuth regions of sidelobe of main beam, and beam patterns of auxiliary channels should have low gains in regions of mainlobe of main beam. In the monopulse radar, the difference beam patterns for monopulse processing have these properties. This paper proposes the method using data from the difference channel for monopulse processing as data from auxiliary channel for sidelobe cancellation. For the proposed SLC, the results of simulation and performance analysis was presented. If the proposed method is used in the monopulse radar, SLC can be constructed by using basic SUM and difference channels without extra channel composition.

A Clutter Estimation Algorithm Applicable to GSC Based Monopulse Radar (GSC 기반 모노펄스 레이다용 클러터 추정 알고리즘)

  • Kim, Na-Yong;Jeon, Hyeon-Mu;Bae, Chang-Sik;Park, Gyu-Churl;Chung, Young-Seek;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.7
    • /
    • pp.576-579
    • /
    • 2017
  • Due to the existence of flash lobe caused by the radome structure, a radar return in general contains clutter component added to target echo. Unlike jammer, clutter is apt to simultaneously coexist with target echo, which hinders a monopulse radar from estimating the angle difference between target echo direction and radar steering direction. In this paper, we propose a clutter estimation algorithm applicable to generalized sidelobe canceller(GSC) based monopulse radar. We show that clutter estimation can be achieved via iterative process of the orthogonal projections. Through simulations, the proposed GSC-based system combined with the clutter estimation can outperform the conventional monopulse system in terms of target angle estimation.

GSC-Structured Space-Time Monopulse System (GSC 구조의 시공간 모노펄스 시스템)

  • Kim, Na-Yong;Jeon, Hyeon-Mu;Jung, Young-Seek;Park, Gyu-Churl;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.999-1002
    • /
    • 2017
  • For a target echo containing interference, it is very difficult to improve the performance of a monopulse radar with spatial domain processing, because the statistical property of interference cannot be exclusively obtained. This paper proposes a monopulse system that has a generalized sidelobe canceller(GSC) filter-based time domain processor as a preprocessor prior to conventional monopulse spatial processing. We analytically show the procedure of time-space signal processing running in the system, and assess its performance through simulation. In particular, the performance dependence on the number of taps in the main channel filter and the estimation error in Doppler frequency are assessed by comparison with those of existing systems.

Clutter Suppression Method for Altitude and Mainlobe Clutter In Moving Platform Radar (이동 플랫폼 레이더에서 고도 클러터와 주엽 클러터 억제 기법)

  • Jeon, Hyeonmu;Bae, Chang-sik;Yang, Hoon-gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1386-1391
    • /
    • 2018
  • The radar in the moving platform is interfered by the mainlobe clutter as well as the altitude clutter that is received from sidelobe. The altitude clutter is relatively short range compared to mainlobe clutter and therefore enters the radar with a strong signal. As these clutters are major reason making the probability of false alarm high, it is required to suppress both altitude clutter and mainlobe clutter. In this paper, It is proposed the clutter suppression method consisted of two pulse canceller to suppress the clutters being two frequency area in moving platform. It is analyzed the correlation of output signals according to the use of pulse canceller and provided the structure of staggered pulse canceller considered the correlation. Finally, it shows that altitude clutter and mainlobe clutter are suppressed by proposed staggered pulse canceller using the simulation.

New Sidelobe Canceller for 3-D Phased Array Radar in Strong Interference (강한 간섭 신호를 제거하기 위한 3차원 위상배열 레이다용 새로운 부엽제거기)

  • Cho, Myeong-Je;Han, Dogn-Seog;Jung, Jin-Won;Kim, Soo-Joong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.10
    • /
    • pp.144-155
    • /
    • 1998
  • The array weights that will maximize the SNR for any type of noise environment are determined by the function of the antenna design configuration and the directions of receiving target and interference signals. The conventional SLCs(sidelobe cancellers) using the SNR maximization perform worst from the saturation of the receiving system of main channel when the main antenna has pattern with high gain at the arrival angle of strong interference. In this paper, the new SLC is accomplished by using two independent antenna architecture. Main antenna is implemented with adaptive nulling, which is used for rejecting high-power interference primarily. Auxiliary antenna is realized with adaptive array for receiving interference signal to be suppressed completely, which has a characteristics of sufficient gain for every direction. The new SLC is implemented with above both antennas. We show that the new SLC, which consists of the adaptive nulling main antenna and the adaptive array auxiliary antenna, is useful in reducing the effect of strong interference like jammer, because the adaptive nulling at main antenna prevents its receiver and signal processor for saturation by strong interference. The proposed SLC has improved SNR over the conventional SLCs. The improved SNR at sidelobe region is typically more than 7 dB for a given test signal. Moreover, it improves the SNR of about 20 dB under strong interference at mainlobe.

  • PDF

New Frequency-domain GSC using the Modified-CFAR Algorithm (변형된 CFAR 알고리즘을 이용한 새로운 주파수영역 GSC)

  • Cho, Myeong-Je;Moon, Sung-Hoon;Han, Dong-Seog;Jung, Jin-Won;Kim, Soo-Joong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.2
    • /
    • pp.96-107
    • /
    • 1999
  • The generalized sidelobe cancellers(GSC's) ar used for suppressing an interference in array radar. The frequency-domain GSC's have a faster convergence rate than the time-domain GSC's because they remove the correlation between the interferences using a frequency-domain least mean square(LMS) algorithm. However, we have not fully used the advantage of the frequency-domain GSC's since we have always updated the weights of all frequency bins, even the interferer free frequency bin. In this paper, we propose a new frequency-domain GSC based on constant false-alarm rate(CFAR) detector, of which GSC adaptively determine the bin whose weight is updated according to the power of each frequency bin. This canceller updates the weight of only updated according to the power of each frequency bin. This canceller updates the weight of only the bin of which the power is high because of the interference signal. The computer simulation shows that the new GSC reduces the iteration number for convergence over the conventional GSC's by more than 100 iterations. The signal-to-noise ration(SNR) improvement is more than 5 dB. Moreover, the number of renewal weights required for the adaptation is much fewer than that of the conventional one.

  • PDF